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ABSTRACT

The burgeoning field of soft bioelectronics heralds a new dawn in medical treatment for neurological and psychiatric conditions,
presenting innovative methods for the stimulation, inhibition, and precise sensing of neuronal activities. Central to these
advancements is the challenge of power supply; devices dependent on ftraditional batteries face limitations regarding
miniaturization and require invasive surgeries for battery replacement. Triboelectric nanogenerators (TENGs), which generate
power from biomechanical movements, offer a promising solution for developing self-powered neurostimulation devices without
the need for an external power supply. This review delves into recent progress in TENGs, with a focus on their application in self-
powered neurostimulation systems. The utility of TENGs across various nervous systems—including the center, autonomic, and
somatic nervous systems—is explored and presented, highlighting the potential for these devices to facilitate neurological
treatments. By summarizing TENGs’ operational details and the potential for clinical translation, this review also identifies
challenges associated with the implantation and integration of neural electrodes and presents recent advances in solutions,

aiming to reshape electric treatments for neurological diseases.
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1 Introduction

The advent of soft bioelectronics marks a significant leap forward
in the treatment of neurological disorders and the integration of
humans with computational technologies [1-10]. These devices,
notably electrical neuro-stimulators and sensors have ushered in a
new era of nervous system machine bioelectronics, with
commercialization efforts accelerating to develop the next
generation of neuromodulation bioelectronics [11-17]. This
burgeoning field aims to regulate neuronal activity within the
central and peripheral nervous systems (PNS) through precise
electrical signals [18-21], offering promising treatments for
conditions such as epilepsy, Parkinson’s disease, psychiatric
disorders, and chronic pain [22-26].

The reliance on batteries as the primary power source for these
neuromodulation bioelectronics, however, presents several
limitations, including the risks and costs associated with surgical
replacements for non-rechargeable batteries and the discomfort
associated with routine recharging [27-31]. Therefore, the pursuit
of battery-free, durable power solutions has become paramount
for the wide adoption and enhanced patient experience of
neuromodulators [32-34]. In the quest for autonomous power
sources [35-37], biomechanical energy harvesting technologies,
particularly triboelectric [5,38], piezoelectric nanogenerators
[39-46], and magnetoelastic generators [35-37, 47-56], stand out
for their potential to convert the body’s biomechanical energy into
electrical energy. These technologies promise to offer long-term,
possibly lifelong, power solutions for neuromodulators without
the need for external power sources [57], marking a significant
shift toward self-powered neurostimulation systems.

Among these, triboelectric nanogenerators (TENGs) have

gained significant attention due to their flexibility, diverse
operational modes [58—64], ease of fabrication, low cost, and
broad material diversity [65,66]. Since their inception in 2012,
TENGs have seen a dramatic increase in research interest [67],
driving innovations in design, materials, energy management, and
in vivo implantation, thus enhancing their power output and
bringing them closer to commercial viability [39, 59, 68]. Four
working modes of TENG have been developed since then,
including the vertical contact separation mode [69-75], the in-
plane sliding mode [76-80], the single-electrode mode [81-85],
and the free-standing triboelectric layer mode [86, 87].

Operating on the principles of triboelectrification and
electrostatic induction between two dissimilar materials, for
example, polymer membranes, TENGs excel in converting tiny
biomechanical pressure of body organs into electricity [88, 89].
This capability has propelled TENGs into the forefront of self-
powered brain and nerve stimulation, offering a new paradigm for
treating a wide range of neurological conditions [90-97].
However, to fully harness the potential of TENGs in clinical
settings, several challenges must be addressed, including the need
for consistent and controlled neurostimulation [98,99],
overcoming the intermittent nature of energy harvesting, and
ensuring the long-term stability and biocompatibility of soft
bioelectronics [100-102].

Moreover, the application of TENGs extends beyond
neurostimulation to include powering therapeutic neural
prostheses and driving optogenetic and drug-delivery devices for
deeper brain therapies [103,104]. This integrative approach,
combining TENG with advanced therapeutic devices, has the
potential to revolutionize neurological treatments, offering
patients a seamless, self-powered solution that eliminates the
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dependency on external power sources and charging devices [38].
While TENGs present a promising avenue for self-powered
neurostimulation [38], achieving clinical adoption requires
addressing biocompatibility and integration with neural
electrodes, alongside enhancing design and energy harvesting
efficiency for direct and controlled neurostimulation [105, 106].
This review highlights the potential and advancements of
TENGs in self-powered neuromodulation, focusing on their
diverse operational modes and their significant role in
neurostimulation across central and peripheral nervous systems. It
assesses current challenges and areas ripe for innovation, aiming
to facilitate the transition of TENGs from experimental models to
viable clinical solutions. By advocating for further research and
development, this review seeks to inspire the creation of self-
powered neurostimulation devices that could reshape neurological
therapies, making them more accessible and seamlessly integrated
with the human body’s natural movements and energy. The
realization of TENG-powered neuromodulation systems could
significantly impact the treatment of neurological disorders,
ushering in a new era of self-sustained and personalized therapy.

2 Working principles of TENGs

TENGs for neurostimulation are versatile, with multiple
operational modes offering varied implantation and integration
options for developing soft neurostimulation bioelectronics
[107-136]. These modes each have distinct mechanisms and
applications, highlighting the potential of TENGs to revolutionize
soft bioelectronics through their adaptable and customizable
energy harvesting capabilities.

2.1 Design modes and electrical generation

Since the 18" century’s pioneering applications, electrical
neurostimulation has evolved into a pivotal tool in treating various
neurological disorders. This evolution has spanned from
employing spinal cord stimulation to enhance movement and
sensation to utilizing deep brain stimulation (DBS) for the
management of Parkinson’s disease and epilepsy [137,138].
TENGs, with their ability to convert mechanical energy into
electrical energy, are paving the way for innovative therapies in
both the central nervous system (CNS) and PNS, showing
promise in axonal regeneration, neural differentiation, and
autonomic nerve modulation (Fig. 1(a)). Their application
spectrum is expanding into the realms of sensory—motor systems,
the development of visual and olfactory sensors, and
advancements in cochlear implants. These endeavors represent
significant progress toward the realization of fully implantable
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neurostimulation systems, marking a new era in medical
technology’s capability to interface with and modulate the nervous
system.

Figure 1(b) showcases the principle of contact electrification as
the foundation of TENG [139]. This process, involving the
formation of a chemical bond or adhesion between two surfaces,
facilitates charge transfer to balance electrochemical potentials.
The atomic-scale-electron-cloud-potential-well model explains
this phenomenon by describing how the overlapping electron
clouds of materials in close proximity allow for the transfer of high-
energy electrons, leading to triboelectric charging. This
mechanism underscores the nuanced interaction between
materials and the importance of selecting the appropriate pairings
for optimal TENG performance. The operational modes of
TENGsS, including vertical contact separation, lateral sliding, single
electrode, and freestanding (Fig. 1(c)), each offer distinct
advantages and challenges for neurostimulation [140].

Vertical contact-separation mode stands out for its efficacy in
converting biomechanical movements directly into electrical
energy, an attribute that aligns perfectly with the spatial and
functional requirements of neurostimulation devices [69—75]. This
mode’s ability to produce controlled electrical signals through
triboelectrification makes it highly suitable for precise
neurostimulation tasks. Its operation, which involves the contact
and separation of two triboelectric layers, allows for efficient
energy conversion without significant material deformation,
making it a robust choice for both CNS and PNS applications.
However, the necessity for physical contact could introduce wear
over time, potentially limiting the device’s lifespan and
necessitating careful material and design considerations to ensure
durability. Lateral sliding mode, by contrast, leverages the parallel
movement between two triboelectric layers to generate energy
[76-80]. The requirement for lateral motion introduces
complexity within the constrained and dynamic environment of
the human body, making it less favored for direct
neurostimulation implementations. While it may offer high
energy efficiency, the spatial limitations and potential for
dimensional changes during device operation present significant
engineering challenges that need addressing for this mode to be
viable for neurostimulation, particularly in areas with limited
space or where direct biomechanical interaction is difficult to
achieve.

Freestanding triboelectric layer mode could harvest bioenergy
from the subtle vibrations in body organs [86,87]. Its design,
which allows for an independent layer to move freely between two
stationary electrodes, can potentially provide a durable and stable
source of energy for neurostimulation without the need for direct
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Figure1 Working principle of TENG for electricity generation and self-powered neurostimulation. (a) TENGs for neurostimulation: enhancing CNS functions and
PNS pathways. (b) TENG contact electrification: contact electrification, electron transfer, and electric field-driven electron flow. Reproduced with permission from Ref.
[139], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018. (c) TENGs™ operational modes: Vertical separation, lateral sliding, single-electrode, and
freestanding layer. Reproduced with permission from Ref. [140], © Babu, A. et al. 2022.
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solid-solid friction [86,87]. Single electrode mode presents a
simpler yet effective design by involving only one electrode in
interaction with an external, freely moving dielectric material
[81-85]. This design simplicity comes with the challenges of lower
power output and difficulties related to grounding and operation
within the body’s aqueous environment. Overcoming these
hurdles requires encapsulation and material engineering strategies,
making this mode potentially useful for specific neurostimulation
scenarios where minimal energy harvesting is sufficient and direct
contact with internal organs is not feasible. In integrating TENGs
into neural electrodes, the selection of operational mode must
consider not only the efficiency of energy conversion but also the
anatomical and functional complexities of the targeted nervous
system. The vertical contact-separation mode emerges as the most
applicable and efficient, especially for soft bioelectronics requiring
precise and controlled neurostimulation.

2.2 Mechanism of TENGs for neurostimulation

The foundation of TENGs in neurostimulation is a stride in
biomedical engineering, signaling a transformative approach to
neurological disorder treatments. These devices leverage the
triboelectric effect, a phenomenon where contact electrification
between differing materials generates surface charges, paving the
way for the conversion of mechanical energy into electrical stimuli
conducive to nerve and spinal cord stimulation [141]. The high-
voltage and low-current output properties make TENGs
particularly suitable for precise neurostimulation applications,
presenting them as a viable alternative to conventional electric
stimulations [5]. Maxwell’s displacement current principle, crucial
for understanding TENG operation, highlights the addition of a
mechano-driven polarization term to account for the electrostatic
charges induced by contact electrification [83, 84]. This conceptual
advancement integrates the mechanical and electrical realms,
offering a comprehensive view of TENGS’ capacity to interact with
and stimulate the nervous system.

TENGs stand at the confluence of safety, reliability, cost-
effectiveness, and flexibility of application—from wearable devices
to implantable neurostimulators [121, 142—146]. This adaptability
is underpinned by their scalable and tunable nanofibrous
membrane architectures, ensuring long-term and versatile
neurostimulation solutions. Furthermore, the potential of TENGs
extends beyond traditional applications, showing promise in nerve
repair [147], obesity treatment [68], muscle system modulation
[98, 148-150], and even atrial fibrillation therapy [151]. In essence,
TENGs for neurostimulation, blending the principles of physics
and material science heralds a new era in therapeutic interventions
for neurological disorders, offering a path towards accessible,
personalized, and effective treatments. At the intersection of
mechanical energy conversion and neurobiology, the integration
of TENGs in neurostimulation marks a pivotal advancement in
the development of non-invasive and efficient therapeutic
technologies. TENG leveraging human biomechanical movements
to generate electrical impulses is vital for in vitro cellular
stimulation, enabling insights into cellular mechanisms, drug
testing, and the development of therapeutic strategies [103].

3 TENGs for
stimulation

peripheral nervous system

The PNS comprises two primary segments: the autonomic
nervous system (ANS), which regulates involuntary body
functions and gland activities, and the somatic nervous system
(SNS), which is involved in muscle movements and relaying
sensory information to the central nervous system [105]. TENGs,
with their ability to convert mechanical energy into electrical
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power, offer a promising avenue for the self-powered
neuromodulation of both the ANS and SNS, potentially
revolutionizing the treatment of peripheral nerve disorders.

3.1 Sciatic nerve stimulation

Exploring the potential of TENGs in sciatic nerve stimulation is
crucial for pain management and muscle rehabilitation [98,
148-150]. The use of TENG for sciatic nerve activation, a critical
component of the peripheral nervous system that branches into
the common peroneal, tibial, and sural nerves, represents a
significant step forward in applying mechanical energy conversion
for innervating various muscles [142, 150] (Figs. 2(a)-2(c)). This
system leverages the direct conversion of mechanical energy to
electrical pulses for nerve stimulation, utilizing a closed-loop
configuration with electrodes connected to the sciatic nerve to
demonstrate TENG’s capability for targeted neural activation
[142] (Fig.2(a)). The observation of induced leg movements
under anesthesia signifies successful muscle stimulation through
the sciatic nerve by the TENG [142] (Fig. 2(b)). The mechanism of
action showcases a stacked-layer TENG designed for efficient
mechanical-to-electrical energy conversion [150] (Fig.2(c)). The
design incorporates a polyethylene terephthalate (PET) sheet in a
zigzag structure for mechanical support, allowing the TENG to
revert to its original position after each press, thus facilitating
continuous energy generation for muscle stimulation. The
incorporation of aluminum films as electrodes enhances charge
output, while the dual role of one aluminum film as both electrode
and active triboelectric surface, complemented by a
polytetrafluoroethylene (PTFE) layer on the second film,
maximizes energy conversion efficiency. This flexibility
underscores the capacity of TENGs to harness everyday body
movements for muscle stimulation, offering a promising avenue
for rehabilitation and therapeutic treatments.

Building on the foundational use of TENGs for direct sciatic
nerve stimulation, recent advances in TENG structures have
broadened performance and application scope, highlighting their
adaptability in meeting the specific demands of functional
electrical stimulation and rehabilitation in neurostimulation device
design. The development of a liquid TENG array represents a
significant leap forward [152] (Fig. 2(d)), offering selective neural
electrode stimulation. This approach solves key challenges such as
liquid evaporation and secure liquid fixation within the device,
ensuring consistent performance and expanded application
potential in neurostimulation. By integrating sponge elements into
the device, this design effectively maintains the presence of the
liquid medium, optimizing electrical output and enhancing the
stimulator’s reliability and effectiveness. The concept of using a
liquid-based array allows for multiple and selective stimulations,
pointing towards versatile applications in functional electrical
stimulation and rehabilitation, bridging the gap between TENG
and practical clinical applications. Further introduction of an arch-
shaped structure with rough surfaces marks a pivotal
improvement in TENG output performance [153] (Fig. 2(e)). The
fabrication process involving aluminum foils and surface textured
polydimethylsiloxane (PDMS) films achieves a TENG that excels
in converting mechanical energy into electrical energy. This high-
performance TENG design, with its micro/nano hierarchical
structures, promises to enhance neurostimulation device efficiency
and effectiveness, signaling a new era of structurally engineered
TENGs that optimize energy conversion and meet the operational
demands of therapeutic interventions [154].

The evolution from the development of advanced TENG
structures for neurostimulation to their integration with neural
interfaces for direct muscle activation and continuous bio-signal
monitoring encapsulates the transformative potential of TENG in
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Figure2 TENGs for self-powered sciatic nerve stimulation. (a) TENG sciatic nerve stimulation in rats. (b) Rat leg movement upon tibialis anterior muscle
stimulation. (c) Asymmetric TENG-powered electrical muscle activation. (d) Battery-free neuromodulation with TENG and neural electrodes. (¢) PDMS structuring
TENG three-dimensional (3D) schematic and final device photo. (f) Human-integrated flexible sling and TENG interface. (g) Flexible neural interfaces with TENGs,
detailing extra-neural, penetrating, and intra-fascicular designs. (h) Waveform polarity on stimulation efficiency in dual-animal measurements. (i) Force profile of rat
leg movement induced by activating varying squares of the TENG. (j) Impedance characteristics of neural electrodes, highlighting suitability for muscle tissue
stimulation at 1 kHz. (k) Motoneuron voltage waveform profiles. (1) Neurostimulator architecture featuring TENG, bioresorbable cuff, and device photo inset. Protocol
for peripheral nerve electrotherapy. (m) Hematoxylin and eosin (H&E)-stained images showing inflammation from natural and high-intensity ultrasound-induced
biodegradation. (n) Nerve function post-electrotherapy in compression nerve injury mice: Wild type, injury, ESE-untreated, ESE-treated (ESE: electrical stimulation
events). (a), (b), and (i) Reproduced with permission from Ref. [142], © He, T. Y. Y. et al. 2019. (c), (h), (j), and (k) Reproduced with permission from Ref. [150], ©
American Chemistry Society 2019. (d) Reproduced with permission from Ref. [152], © Elsevier Ltd. 2018. (e) Reproduced with permission from Ref. [153], © Elsevier
Ltd. 2013. (f) and (g) Reproduced with permission from Ref. [148], © Elsevier Ltd. 2017. (1)-(n) Reproduced with permission from Ref. [157], © Lee, D. M. et al. 2023.

the biomedical field [155]. A pioneering closed-loop system was
developed to use TENGs to convert muscle movements into
electrical energy for direct neuromodulation [148] (Fig.2(f)),
enabling the dynamic interaction between TENGs and neural
interfaces to activate targeted muscles for therapeutic applications.
The versatility of neural electrodes, including extra-neural and
intra-fascicular interfaces, is brought to the forefront [148] (Fig.
2(g)), illustrating the broad applicability of TENG across various
clinical needs. E-skin represents a significant stride in measuring
bio-signals, showcasing the integration of flexible and stretchable
electronics for real-time monitoring of physiological functions
[156]. This multifaceted approach not only enhances the
capabilities of TENGs in neurostimulation but also opens new
avenues for diagnosing and treating a wide range of medical
conditions.

The waveform polarity’s impact on motoneuron activation
reveals the critical role of electrode configuration in achieving
precise and effective stimulation [150] (Fig.2(h)). This
underscores the importance of nuanced control and
understanding electrophysiological dynamics for developing
neuroprosthetic devices using TENG-generated signals. The
nearly linear correlation between stimulation current and force
output in muscle activation identified through the stimulation of
the tibialis anterior muscle simplifies the process of determining
the necessary activation area for desired force output [142] (Fig.
2(i)). This finding is instrumental for the development of
prosthesis control mechanisms, offering a methodical approach to
tailoring neurostimulation for rehabilitation and therapeutic
applications. The neurostimulation system’s examination of
electrode site impedance and mechanical durability validates its
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efficiency in current delivery and suitability for long-term
neuromodulation, highlighting its resilience and reliability under
physiological conditions [150] (Fig.2(j)). The consistency in
voltage waveform output across different pulse directions [150]
(Fig. 2(k)), a critical aspect for the predictable operation of TENG-
based neurostimulation systems guarantees a stable and reliable
therapeutic intervention, crucial for the successful implementation
of TENG in neurostimulation. Delving into waveform polarity,
force output measurement, and electrode impedance reveals the
intricate design considerations essential for harnessing TENG in
effective sciatic nerve stimulations.

To reduce inflammatory responses in sepsis and ease atrial
fibrillation symptoms, an acoustically triggerable on-demand
bioresorbable  neurostimulator, featuring an acoustically
triggerable transient TENG and a bioresorbable cuff electrode was
developed [157] (Fig.2(1)). This battery-free system utilizes
ultrasound sources for targeted peripheral nerve electrotherapy,
ensuring biological safety and enabling non-invasive clinical plan
adjustments. Its potential in treating peripheral neuropathies,
including compression injuries and Charcot-Marie-Tooth
disease, marks a significant leap in nonpharmacological therapy.
The mechanical disintegration and complete elimination of the
device under high-intensity ultrasound waves highlight the
transient nature and compatibility with therapeutic timelines [157]
(Fig. 2(m)). The efficacy of electrical stimulation on nerve recovery
is revealed by improved nerve conduction velocities and action
potentials in compression injury models [157] (Fig.2(n)).
Ultrasound-assisted TENG implants demonstrate significant
therapeutic efficacy in treating peripheral neuropathies by
enabling the adjustment of stimulation parameters, such as
frequency and current amplitude, through non-contact ultrasound
methods, marking a paradigm shift in neurostimulation therapies.

3.2 Vagus nerve stimulation (VNS)

The introduction of ultrasound-assisted TENG implants signifies a
transformative development in treating peripheral neuropathy
with a minimally invasive and battery-free solution [72,74, 158,
159]. The use of ultrasound as an external trigger for TENG
implants revolutionizes the way electrical stimulation is delivered
internally, enabling the precise tailoring of therapies to individual
needs through the non-invasive penetration of biological tissues
and compatibility with existing medical imaging techniques
[159-162]. A pioneering application of this technology is the
ultrasound-driven hydrodynamic TENG designed for vagus nerve
stimulation [158] (Fig.3(a)), showcased in subcutaneous rat
models. This device incorporates a polyacrylamide (PAM)-
graphene conductive hydrogel that, when activated by ultrasound
vibrations, generates electrical outputs by exploiting the interface
between the hydrogel and phosphate buffer saline (PBS). Ensuring
biosafety, the TENG connects to the vagus nerves with flexible
gold wires encased in PDMS, effectively maintaining cardiac
thythm stability and minimizing thermal effects during
stimulation. Evidence of the TENG implant’s integration and
biosafety three months post-implantation includes healed suture
wounds and tissue compatibility [158] (Fig. 3(b)), demonstrating
its viability as a wireless power source for bioelectronic devices and
a sustainable option for neurostimulation. The electrical output
under varying load resistances reveals its potential for wireless
power supply to implanted bioelectronic devices and as a battery-
free neurostimulator [158] (Fig.3(c)). Furthermore, the precise
synchronization of electrophysiological responses with ultrasound
pulses, observed in electrocardiogram (ECG) recordings,
underscores the device’s capability to provide targeted
neurostimulation without interfering with normal cardiac
functions [158] (Fig. 3(d)).
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Integrating TENG into VNS also presents a promising
approach to addressing obesity and body weight management
through neurostimulation. This advanced technique utilizes the
natural movements of the stomach, converting them into electrical
signals that modulate vagus nerve activity to influence appetite
and food intake [68] (Fig. 3(e)). By affixing a TENG device directly
onto the stomach’s surface, this system harnesses peristaltic
movements to produce biphasic electric pulses. These pulses are
strategically directed towards the anterior and posterior vagus
nerves, ensuring precise stimulation while avoiding interference
with the heart and lungs [108,121,163]. The device’s
encapsulation in durable and biocompatible materials, verified
through in vitro testing, underscores its potential for safe long-
term implantation. The operational dynamics of the TENG within
the VNS system revealed the cyclical generation of electrical pulses
in sync with stomach contractions [68] (Fig.3(f)). This self-
sustaining mechanism highlights the direct correlation between
physiological activities and therapeutic outcomes, making it a
promising solution for non-invasively regulating body weight. A
significant reduction in body weight and food intake among
subjects equipped with the VNS device, compared to controls,
demonstrates the potential of TENG-based VNS in combating
obesity [68] (Figs. 3(g) and 3(h)). The VNS device’s adaptability to
various stomach movements [68] (Fig. 3(i)) ensures the device’s
effectiveness across a wide range of stomach dynamics, making it a
versatile tool in the realm of neurostimulation for weight control.
TENG designs employing biocompatible materials such as PDMS
for encapsulation demonstrate harmonious integration with
bodily tissues [151] (Fig.3(j)), showing no adverse biological
responses post-subcutaneous implantation.

Beyond traditional weight control interventions, the application
of TENG in VNS systems opens avenues for neurostimulation
across a variety of biomedical applications. Recent advance in a
closed-loop, self-powered low-level VNS system marks an
advancement in managing atrial fibrillation [151] (Fig.3(k)),
showcasing the application of TENGs in therapeutic devices that
respond to physiological cues for prompt medical intervention
and underlining their promise in cardiac care. The mechano-
neuromodulation captures mechanical movements to stimulate
nerve activity, exemplified by a bladder modulation prototype that
underscores the broad potential of TENGs in diverse
neuromodulation applications and their role in developing
interactive, responsive medical devices [106] (Fig.3(1)). In the
advancement of VNS for therapeutic treatments, a hybrid
nanogenerator has been engineered to efficiently bridge the gap
between the demand for continuous energy supply and the
intermittent energy generation inherent to TENGs. This hybrid
TENG employs a dual-layered structure that combines the
dynamic energy harvesting capabilities of triboelectric layers with
the stable energy output of piezoelectric materials. This hybrid
design is specifically tailored to enhance the VNS devices
effectiveness in managing conditions like atrial fibrillation,
showcasing a novel approach to self-powered medical
interventions. Its operational principle initiates with the device in a
neutral state, devoid of any electrical potential across its layers
[151] (Fig. 3(m)). Upon mechanical stimulation—mimicking the
physiological movements associated with the vagus nerve’s
vicinity—the device undergoes deformation. This leads to the
triboelectric layers coming into contact, generating an electrical
charge, while simultaneously compressing the piezoelectric
material to augment the energy output. This ensures a continuous
flow of electrical pulses necessary for effective VNS, even in the
absence of constant mechanical energy. The “switch” mechanism
inherent to the hybrid structure not only optimizes energy capture
from bodily movements but also significantly reduces the risk of
unintentional nerve stimulation, enhancing the safety profile of
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Figure3 TENGs for self-powered vagus nerve stimulation. (a) Subcutaneous ultrasound-responsive TENG implant for vagus nerve stimulation. (b) TENG three
months post-implantation site photo. (c) Ultrasound-responsive TENG output voltage and power as a function of load resistors. (d) Voltage synchronization with
ultrasound input pulses. (e) Overview of a biocompatible VNS system: Operation schematic for biphasic signal pathway, implantation with gold leads to vagal trunks,
and the final packaged device. (f) Working schematics of a VNS device across various stomach motion stages. (g) Rat food consumption patterns and steady-state daily
intake across groups. (h) Weight management in rat growth phase: VNS vs. control group sizes. (i) Voltage response in phosphate-buffered saline with varying
agitation frequencies via VNS device connected to a load-matching implant impedance. ((j) and (k)) Subcutaneous TENG implant. (1) Bladder anatomy schematic. (m)
Hybrid TENG neurostimulation principle. (n) Voltage, current variation, and TENG power across varying load resistances. ((0) and (p)) TENG output currents at a
heart rate of 100 BPM. (a)-(d) Reproduced with permission from Ref. [158], © Elsevier Ltd. 2021. (e)-(i) Reproduced with permission from Ref. [68], © Yao, G. et al.
2018. (j), (k), (m), and (n) Reproduced with permission from Ref. [151], © Science China Press 2022. (I), (0), and (p) Reproduced with permission from Ref. [106], ©

Elsevier Ltd. 2019.

the VNS system. The efficiency of this hybrid structure is evident,
where improvements in electron transfer are quantitatively
demonstrated through increased current and voltage outputs
[151] (Fig.3(n)). This showcases the technical advancements in
TENG design that contribute to more effective neurostimulation
devices. Transitioning from this sophisticated design, the
multilayer TENG activated by manual hand-tapping shows the
versatility and user accessibility to generate significant electrical
energy with minimal mechanical input [106] (Fig. 3(0)), tailored
specifically to meet the impedance characteristics of neural
interfaces. Further extending TENG’s practical utility, a compact,
handheld mechano-neuromodulator prototype for bladder
modulation [106] (Fig.3(p)) underscores the technology’s
adaptability to everyday use, offering advanced neurostimulation
capabilities in a user-friendly format. These advances mark
significant strides towards integrating TENG into a variety of
neurostimulation applications, from precise energy delivery
mechanisms to accessible and practical devices for daily
therapeutic use.

4 TENG in central nervous system stimulation

The evolution of brain bioelectronics has introduced a variety of
neuromodulation techniques that have significantly expanded our
capacity to stimulate, inhibit, and monitor brain activities [97, 104,

164-168].  These  techniques  encompass  electrical,
electromechanical, optogenetic, magnetic, and ultrasonic
approaches, each tailored to address specific neurological
conditions and restore sensory functions. Brain neuromodulation,
through its diverse methodologies, plays a crucial role in treating
neurological disorders such as Parkinson’s disease [24], epilepsy
[22,23], and chronic pain [25,26], while also offering potential
management strategies for psychiatric conditions including
schizophrenia, depression, obsessive-compulsive disorders, and
autism [21]. The application and effectiveness of these
neuromodulation strategies depend on multiple factors including
the target location within the brain, size of the stimulated area, and
the desired therapeutic outcomes. TENGs, serving both as
electromechanical energy harvesters and power sources, are
particularly instrumental in CNS stimulation, where they can be
integrated into systems for sensory substitution and enhanced
perceptions [165], providing a pathway to restore or augment
sensory functions like smell and touch. Moreover, TENGs offer a
reliable power solution for DBS devices [164], which are crucial
for the management of severe neurological disorders. Their ability
to generate power through biomechanical activities makes them
suited for powering optogenetic modulation devices as well,
enabling precise neuronal activation with unparalleled spatial and
temporal resolution [166, 169].
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4.1 Deep brain stimulation for neurological disorders

The evolution of DBS technologies for neurological disorders is
witnessing a shift towards self-sustainability, addressing the
challenges of energy supply in implantable neurostimulators. This
transformation is spearheaded by the integration of TENGs into
neurostimulation systems, exemplified by the development of a
self-sustainable, intermittent DBS approach [164] (Fig.4). This
pioneering method capitalizes on the unique properties of TENGs
to bridge the gap between the low energy yield from
biomechanical movements and the high energy demands typical
of neurostimulation devices. The bio-TENG is optimized to
capture the mechanical energy from the natural breathing motion
of the lungs (Fig. 4(a)). When coupled with a supercapacitor for
energy storage and a pulse generator for the delivery of precise
stimulation pulses, this system marks a significant leap in
neurostimulation. The TENG’s multilayer design effectively
harnesses the kinetic energy of respiratory movements to charge
the supercapacitor, which in turn, powers the pulse generator.
This generator is then able to produce highly regulated electrical
pulses tailored in frequency and width to meet specific therapeutic
needs (Fig.4(b)). This DBS system showcases its functionality
through ex vivo experiments in genetically modified mouse brain
tissue, where stimulated regions are indicated by fluorescence
signaling (Fig. 4(c)).

A key feature of this system is its intermittent operation mode,
alternating between stimulation and charging phases to achieve a
balance that ensures self-sustainability. This intermittent
stimulation pattern not only conserves energy but is also posited
to be effective in eliciting therapeutic responses with brief or
periodic neural activation. This system reshapes DBS to treat
neurological conditions by offering a self-powered and
intermittently operating neurostimulator, which addresses the
longstanding challenge of aligning the relatively low power
production of TENGs with the substantial energy requirements of
implantable neurostimulators. Through TENG structural design
and strategic integration of energy management, the promise of
efficient, self-powered DBS devices for neurological disorders is
becoming an achievable reality [58, 170, 171].

4.2 Sensory substitution and enhanced perceptions

TENGs have emerged as a groundbreaking tool in advancing CNS
neurostimulation, offering novel approaches for sensory
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substitution and enhancing sensory perceptions. The application
of TENG in neural prosthetics represents a significant shift
towards more interactive and responsive therapeutic
interventions, paving the way for sensory augmentation and the
treatment of sensory deficits [167,172,173]. Recent advance in
sensory substitution in the brain is highlighted [165] (Fig. 5(a)),
where a self-powered multi-perception electronic skin, when
connected to the mouse brain, simulates the tactile sensation of
whiskers. This device’s ability to convert external tactile stimuli
into electrical signals that are then processed by the brain’s
primary somatosensory barrel cortex (S1BF area) demonstrates
TENGS’ potential in bridging sensory gaps. This advance reveals
the feasibility of TENGs in replicating and enhancing natural
sensory feedback mechanisms, offering potential applications in
prosthetics and sensory aids that could restore or augment tactile
sensations for individuals with sensory impairments. The design’s
flexibility and transparency, coupled with a novel architecture that
supports various sensory units for detecting mechanical
deformation, sonic waves, gases, pH levels, and light [165] (Fig.
5(b)), underscore the versatility of TENGs in monitoring and
interacting with the environment. This approach not only shows
the potential to enhance human sensory capabilities but also has
implications for safety and environmental awareness,
demonstrating the potential for TENGs in creating more adaptive
and responsive human-machine interfaces [174,175]. The
detailed response analysis against varying concentrations of
acetone vapor showcases the precision and reliability of TENG-
based sensors [165] (Fig.5(c)). This specificity in detection
illustrates the potential of TENGs in environmental sensing and
monitoring [176], providing valuable insights into their
application in developing devices that can accurately and
selectively respond to a wide range of stimuli. Such capabilities
highlight the potential for TENGs to create advanced sensory
substitution systems or restore lost senses, thus enhancing the
quality of life for individuals with sensory deficits.

43 Powering micro light-emitting diode (ULED) for
optogenetic brain modulation

Optogenetics, a technique that allows for the control of neuronal
activity using light, has traditionally relied on external power
sources such as batteries or wireless transmission. The advent of
TENGs has introduced a self-sustaining power solution [168, 177,
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Figure4 TENG:s for self-powered deep brain stimulation. (a) Schematic of a self-sustaining DBS harvesting energy from a breathing swine lung, comprising energy
harvesting bio-TENG, storage supercapacitor, and a microchip for regulated stimulation via an implantable microelectrode. (b) The structure of a bio-TENG. (c)
Fluorescent emission at the hippocampus from a microelectrode, powered by a TENG-generated signal. (a)-(c) Reproduced with permission from Ref. [164], ©
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Figure5 TENGs for self-powered brain neurostimulation and optogenetics. (a) Self-powered TENG e-skin connected to mouse somatosensory barrel cortex
stimulation for obstacle navigation. (b) TENG e-skin photo and fabrication process. (c) The sensor exhibits high sensitivity, stability, and selectivity for acetone vapor
detection. (d) Flash-induced TENG energy harvesting for optoelectrical stimulation. (e) Sensor unit sensitivity to light: detection of intensity, wavelength, and
response/recovery rate. (f) TENG e-skin’s response and recovery dynamics. (g) Mouse M1 region pLED stimulation, and confocal images showing Chrimson (red) and
4,6-diamidino-2-phenylindole (DAPI, blue) at the motor cortex. (h) Open circuit voltage under deformation. (i) Rectified voltage from TENG to power pLED in a
60 Hz magnetic field from a hairdryer cable. (a)-(c), (f), and (h) Reproduced with permission from Ref. [165], © Elsevier Ltd. 2017. (d), (g), and (i) Reproduced with
permission from Ref. [166], © Elsevier Ltd. 2020. (e) Reproduced with permission from Ref. [169], © Elsevier Ltd. 2019.

178]. The integration of TENGs with optogenetic stimulation
represents a groundbreaking convergence of mechanical energy
harvesting and precise neuronal control. This synergy offers a
novel approach to neuromodulation, enabling the stimulation or
inhibition of specific neuron populations in the brain through
light.

Figure 5(d) elucidates the fabrication of a flash-enhanced micro
magnetic TENG, which integrates a red flexible puLED for in vivo
optogenetic brain modulation [166]. This design comprises a
nylon substrate as the positive triboelectric layer and Teflon as the
negative layer, with gold layers serving as current collectors. The
assembly is then affixed to a titanium plate adorned with small
magnets, enabling the conversion of ambient alternating current
(AC) magnetic fields—common in household appliances—into
the mechanical vibrations necessary to activate the TENG. The
enhancement of the Nylon substrate’s surface through
photothermal interaction significantly boosts the TENG’s
efficiency, thereby facilitating targeted activation of neurons with
pulsed light, a technique that could offer novel insights into neural
pathway functions and behavioral outcomes. The development of
a methylammonium lead iodide (MAPbI;)-based TENG for
stimulating hippocampal tissue in mouse brains represents a
notable advance in neurostimulation [169] (Fig. 5(e)). This device
utilizes a perovskite MAPDI; layer, serving dual roles as both a
positive triboelectric component and a photosensitive element,
combined with PDMS acting as the negative triboelectric layer and
structural support, with copper employed for current collection.
The integration of these materials allows for the harvesting of
human motion through triboelectrification between the MAPbI,
and PDMS layers, which can then be utilized for direct brain
stimulation. Further enhancing its functionality, the MAPbI, layer’
s photosensitivity enables the electronic skin to act as an “on/off”
wireless switch in response to photo illumination [169] (Fig. 5(e)).
This capability not only underscores the material’s versatility but
also opens up possibilities for nuanced control over
neurostimulation processes. Additionally, this technology has been
applied in a pioneering manner to investigate neuroplasticity—the
changes and modifications in synaptic strength between neurons.
By implanting stimulation electrodes in the hippocampus’s CA3

region and recording electrodes in the CAl region, the device
facilitates the observation of evoked brain activity and synaptic
responses, manifesting as field excitatory postsynaptic potentials.
This pioneering application demonstrates TENG-based e-skin’s
potential for self-powered characterization of synaptic plasticity,
marking a significant step forward in exploring the complexities of
neural mechanisms and synaptic dynamics. The TENG e-skin’s
rapid oscillation in current during illumination, followed by a
swift return to baseline indicates its sensitivity and quick
adaptability to changes in light stimuli [165] (Fig. 5(f)).

Positioned under the mouse skull, the pLED array is powered
by the TENG to illuminate specific regions of the mouse brain,
such as the primary motor cortex (M1), responsible for whisker
movements [166] (Fig.5(g)). TENG’s open-circuit voltage
response under mechanical stress [165] (Fig.5(h)), and the
rectified sharp voltage spikes up to nearly 200 V to power pLED
[166] (Fig.5(1)) reveal TENG’s capacity for light-induced
responses and its versatility in sensing diverse environmental
stimuli such as vibration, sound, and light, crucial for the
development of integrated sensing devices in self-powered
optogenetics and multifunctional environmental sensing.
However, the reliance on external magnetic fields for operation
introduces a degree of variability in the generated signals,
potentially affecting the precision and control of optogenetic
stimulation. This limitation underscores the necessity for
developing TENG optogenetic systems to be fully encapsulated
and isolated from bodily fluids, equipped with long-term
implantation capabilities, and integrated with energy storage and
electrical circuits for enhanced control and efficiency.

5 Challenges and perspectives

The burgeoning field of TENGs is reshaping neurostimulation
technologies, propelling them towards groundbreaking
applications in e-skins [156, 179], wearable devices [180—-189], and
self-powered medical implants [149,190] (Fig.6). However, the
journey from laboratory prototypes to clinically approved devices
is fraught with hurdles that necessitate ingenious solutions
including device engineering, power management, implantation
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techniques, and biosafety [173,191,192]. Addressing these
challenges will not only advance the field of neurostimulation but
also unlock new dimensions in personalized therapy and
rehabilitative medicine.

5.1 Device metrics and controlled neurostimulation

Despite their significant potential, the integration of TENGs into
neurostimulation therapies confronts challenges such as
uncontrolled electrical outputs due to the variable nature of
biomechanical movements and the technical demand for
consistent therapeutic signal parameters [193]. Traditional TENG
applications have predominantly relied on mechanical energy
conversion from movements such as hand tapping or bodily
functions, resulting in electrical signals that may lack the
consistency required for therapeutic applications. Clinically,
neurostimulation demands precise control over signal parameters
like amplitude, frequency, and pulse duration to ensure
therapeutic efficacy. Innovations in device design, incorporating
fast-charging energy storage units and pulse-generating
microcircuits, are essential [194]. These enhancements would
allow the storage of TENG’s electrical output for generating
consistent neurostimulation patterns. Moreover, the long-term
durability of TENG components, including the energy storage
unit and implanted electrodes, necessitates rigorous testing and
validation to ensure sustained performance [100, 101].

Another significant challenge lies in TENG’s power output
specifications [195]. The intermittent nature of TENG-generated
alternating current, combined with the low mechanical impact
from human movements and the high-power demands of
conventional neurostimulators, poses a considerable barrier.

Nano Res. 2024, 17(10): 8926-8941

Strategies for enhancing the efficiency of mechanical-to-electrical
conversion and developing power management units capable of
optimizing TENG outputs to meet clinical requirements are under
exploration [105, 154, 155]. Furthermore, the integration of
efficient energy storage systems could bridge the gap between
TENG’s energy production, and the continuous power supply
needed for effective neurostimulation.

5.2 Implantation and neural interface challenges

The prospect of chronic in vivo TENG implantation introduces
complexities related to biocompatibility, device fixation, and
minimally invasive surgical techniques [196]. Materials like PDMS
offer a promising solution for biocompatible encapsulation, but
the challenge of securely affixing TENG devices near soft tissues
remains [99]. Advances in surgical techniques and TENG/neural
interfaces are critical to mitigate potential tissue damage from
TENG’s electrical outputs. Innovating micro-electrode designs
with neuro-biocompatible materials could significantly reduce
adverse effects at the neural interface during electrical stimulation.
TENG?’s interaction with various body organs for biomechanical
energy harvesting raises biosafety concerns, particularly regarding
potential tissue damage during operation. Ensuring smooth, edge-
free TENG surfaces and proper device positioning can minimize
injury risks [4]. Additionally, anti-biofouling coatings on TENG
surfaces may reduce post-surgical inflammation and infection
risks, enhancing the biosafety profile of these devices in clinical
settings [154].

5.3 Perspectives in TENG neurostimulation
The integration of TENGs into the realm of neurostimulation

Figure 6 Perspectives of TENGs in neurostimulation: waterproofing; biocompatibility and durability enhancements, therapy and rehabilitation integration, and the
development of wearable TENGs. Waterproof TENG e-skin. Reproduced with permission from Ref. [179], © Wiley-VCH GmbH 2020. Rehabilitation image.
Reproduced with permission from Ref. [149], © Wang, J. H. et al. 2019. Durability image. Reproduced with permission from Ref. [196], © Ouyang, H. et al. 2019.

Wearable TENG. Reproduced with permission from Ref. [189], © Elsevier Ltd. 2019.
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heralds a new era in bioelectronic medicine, blending the lines
between energy harvesting and therapeutic interventions.
Advances in stretchable, waterproof, ultra-thin e-skin TENGs are
revolutionizing the way to capture human motion energy,
opening doors to self-powered haptic sensing and novel
interactions between humans and machines [179, 197-202]. This
shift towards wearable electronics emphasizes a seamless fusion
with daily life, enhancing user experience and interaction
modalities. Moreover, the potential of TENGs to facilitate direct
muscle or nerve stimulation offers a groundbreaking approach to
rehabilitation and therapy [90, 149]. Ultrasound-assisted TENG
implants stand out for their capacity to deliver localized and
controlled stimulation, along with drug delivery, through non-
invasive methods [158,159,190]. By providing targeted
neurostimulation, TENGs open pathways for addressing muscle
atrophy and peripheral neuropathy without reliance on
pharmacological solutions, which significantly enhances patient
comfort and compliance, marking a substantial advancement in
peripheral neuropathy treatment. The seamless fusion of
ultrasound technology with TENGs underscores the immense
potential of this integrated approach to transform the landscape of
bioelectronic medicine and rehabilitation.

Meanwhile, the drive towards materials with biocompatibility
and long-term implantation durability is reshaping TENG design
[100, 101, 203]. To address biocompatibility challenges associated
with chronic implantation, there is a need to explore materials that
minimize inflammatory reactions and fibrotic encapsulation.
Strategies such as employing advanced bioinert materials, surface
coating technologies that can mimic the biological interfaces, and
designing TENGs that can adapt to bodily movements without
degradation, could significantly improve their integration and
functionality over extended periods [196]. The exploration and
development of such wearable TENGs not only highlight the
adaptability of this technology but also its potential to be
seamlessly integrated into daily life, thus broadening the scope of
their applicability. By harnessing the power of human motion for
continuous, self-powered neurostimulation, these devices promise
to transform health monitoring and neurostimulation therapies,
making them more accessible and effective. In addition, the
integration of adaptive algorithms holds promise for enhancing
stimulation precision, allowing for more targeted and personalized
therapy [175,204] (Fig.6). Wireless transmission capabilities
further enhance the usability and convenience of TENG-based
neurostimulation devices, freeing patients from cumbersome
wired connections [158, 169, 205—208]. Moreover, advancements
in power management and structural miniaturization contribute
to making TENGs more practical and user-friendly [154, 173,
191]. By optimizing energy consumption and reducing device size,
these developments pave the way for the widespread adoption of
TENG technology in clinical settings. The convergence of these
technologies not only promises to enhance e-skin functionalities
and develop wearable neurostimulation devices but also opens
new avenues for treatments in bioelectronic medicine.

6 Conclusion

The integration of TENGs in neurostimulation represents a
significant leap toward realizing self-powered and wireless neural
modulation systems. These developments herald a new era in the
treatment of a wide array of neurological disorders and the
creation of advanced brain-machine interfaces. Distinguished
from traditional medical electronics, TENGs harness the low-
frequency movements of human body organs to generate electrical
power, opening avenues for a variety of self-powered
neurostimulation  systems. These range from enhancing
neurostimulation therapies to energizing therapeutic neural
prostheses such as bionic limbs and cochlear implants.
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Leveraging the mechanical energy of the human body to
operate prosthetic devices promotes a more seamless integration
between the user and the prosthetic, enhancing user experience
and functionality. Moreover, TENGs are being investigated for
their potential in powering devices for optogenetics and targeted
drug delivery, providing precise control over neuronal activity and
offering innovative treatments for mental health issues. The
concept of an integrated care loop, which encompasses real-time
sensing, diagnostic analysis, and therapeutic intervention,
represents the cutting edge of personalized medicine. This
approach is further bolstered by advancements in wireless
communication, enabling the continuous and real-time
monitoring of biological signals from various brain regions.
Recent research has shown TENGS’ significant promise in nerve
stimulation and spinal cord injury treatments, offering new
avenues for repairing damaged nerves and modulating
physiological functions in preclinical models. However, the
emergence of fibrotic tissue around implants, the potential for
localized thermal effects, persistent inflammation, and discomfort
due to electrical stimulation highlight areas requiring further
investigation and refinement [5].

The materials choices for TENG construction are also
advancing, with a focus on biodegradable materials for transient
neuromodulation applications [99]. These materials aim to reduce
secondary surgical interventions by allowing the devices to
naturally degrade and exit the body metabolically. TENGs offer
numerous advantages, including straightforward manufacturing
processes, cost efficiency, a wide range of material options, and
flexibility, making them ideal for soft bioelectronics. Their
therapeutic applications have been demonstrated in fields such as
weight control, bladder regulation, muscle rehabilitation, and
cognitive enhancement. The adoption of TENGs in
neurostimulation opens promising new treatment avenues for
conditions from epilepsy and Parkinson’s disease to essential
tremors and various psychiatric disorders. Overcoming existing
challenges and leveraging TENGS’ unique capabilities, the future
of  neurostimulation  promises  enhanced efficiency,
personalization, and patient benefit, signifying a transformative
milestone in medical technology and the treatment of neurological
conditions to improve quality of life.
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