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Abstract
The medical domain is currently experiencing a significant shift from centralized healthcare models to home-based and per-
sonalized monitoring paradigms, particularly in the realm of cardiovascular monitoring. This move towards wearable systems 
is aimed at serving a wider population, reducing hospital resources’ burden, and cutting healthcare costs. There is growing 
interest in leveraging advanced nanomaterials to develop cutting-edge wearable biosensors for cardiovascular applications. 
These devices offer precise, real-time, and continuous data collection, which is crucial for creating personalized therapeutic 
interventions. Central to this innovation is the integration of various nanostructures with advanced biosensing techniques 
and microelectronics. These nanostructures play a pivotal role in enhancing preventative medical care by facilitating early 
diagnosis and management of critical health conditions. This review explores the latest advancements in wearable biosensors 
and assesses their role in monitoring cardiac vitals. It provides a comprehensive analysis of the materials, design principles, 
functional mechanisms, and recent breakthroughs related to these sensors, focusing on their applications in monitoring 
cardiac activity, measuring blood pressure, assessing pulse wave velocity, and detecting biomarkers.
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1  Introduction

Cardiovascular diseases (CVDs) are the leading cause of 
death worldwide, accounting for approximately 31% of all 
mortalities, or about 17.9 million deaths annually [1–4]. The 
often covert nature of CVDs, which can escalate to acute 
events such as myocardial infarctions or strokes without 
prior detection, underscores the need for continual cardio-
vascular monitoring [5]. In this context, the electrocardio-
gram (ECG), which diagnoses various cardiac conditions 
by analyzing the heart’s electrical activity, is of paramount 
importance [6]. However, the ECG’s limitations in detecting 
unpredicted and time-sensitive cardiac anomalies highlight 
the pressing need for advanced wearable technologies that 
enable rapid and precise CVD monitoring [7, 8]. 

Over the past decade, there has been a significant inter-
disciplinary effort to incorporate nanomaterials into wear-
able biosensor development. This stems from the realization 
that materials at the nanoscale possess unique properties 
that blend characteristics of bulk solids with those of atomic 
or molecular systems [9, 10]. Nanomaterials, defined by 
their dimensions ranging from 1 to 100 nm, are seen as key 
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enhancers of detection sensitivity, signal fidelity, and sta-
bility in biosensing applications [11, 12]. Recent advance-
ments exemplify the potential of bimetallic nickel-cobalt 
oxide/carbon composites, demonstrating their superior 
electromagnetic wave absorption capabilities. The meticu-
lous design of these nanocomposites, characterized by their 
unique urchin-shaped morphology, underscores the signifi-
cant role of nano-architectures in amplifying the functional 
properties of biosensors. The incorporation of such nano-
materials into biosensing platforms could markedly improve 
the detection and monitoring of cardiovascular conditions, 
by harnessing the enhanced electromagnetic interaction at 
the nanoscale for more sensitive and stable biomarker anal-
ysis [13, 14]. A notable feature of nanomaterials is their vast 
specific surface area, which allows for the capture of highly 
sensitive signals and the enhancement of signal detection in 
small sample volumes, robust sensing probes, and miniatur-
ized devices [15–30]. 

The integration of nanomaterials into the development 
of wearable biosensors for cardiovascular monitoring rep-
resents a significant advancement in medical technology, 
blurring the lines between nanotechnology and biomedical 
engineering [15, 18–20, 22, 24–30]. This interdisciplinary 
effort over the last decade has underscored the transforma-
tive potential of nanomaterials, defined by their dimensions 
ranging from 1 to 100 nm. These materials effectively bridge 
the divide between bulk solids and atomic or molecular sys-
tems, embodying unique characteristics that are specifically 
harnessed in biosensing applications. The intrinsic proper-
ties of nanomaterials, notably their extensive specific sur-
face area, are critical to boosting biosensor performance 
[11, 12]. This observation is further substantiated by recent 
research on flexible and biocompatible polystyrene/multi-
walled carbon nanotubes (PS/MWCNTs) films, which have 
demonstrated high permittivity and low loss, key factors for 
enhancing the sensitivity and reliability of wearable biosen-
sors for cardiovascular monitoring [31]. Such advancements 
in material science not only pave the way for the next gen-
eration of biosensors but also highlight the pivotal role of 
carefully engineered nanocomposites in achieving optimal 
sensor performance. Through these advancements, nano-
materials are revolutionizing cardiovascular health man-
agement, heralding new possibilities for early detection, 
continuous monitoring, and potentially profound effects on 
patient care and outcomes.

Furthermore, the application of nanomaterials in bio-
sensors notably improves signal fidelity and stability, key 
factors for dependable and precise monitoring systems [16, 
17, 21, 23]. These enhancements stem from the unique elec-
trical, chemical, and physical properties of nanomaterials, 
which promote improved signal transduction and minimize 

background noise. Consequently, biosensors are capable of 
detecting slight fluctuations in physiological markers that 
indicate cardiovascular health or disease states. The integra-
tion of nanomaterials has also driven innovation in device 
miniaturization and the development of robust sensing 
probes. These advancements have culminated in the crea-
tion of lightweight, non-invasive, and user-friendly devices 
capable of consistently monitoring cardiovascular health 
metrics in real-world settings, beyond the confines of tradi-
tional healthcare facilities. Such devices play a crucial role 
in enabling patients to proactively manage their health, pro-
viding instant insights into their cardiovascular condition.

The convergence of nanotechnology with biosensor 
development has initiated a new era of cardiovascular 
monitoring, leveraging the distinctive properties of nano-
materials to significantly enhance wearable biosensor 
performance [32, 33]. This cross-disciplinary strategy not 
only broadens the scope of biosensing technologies but 
also sets the stage for future advancements in personalized 
healthcare, highlighting the pivotal role of nanomaterials 
in advancing the efficacy, sensitivity, and accessibility of 
cardiovascular monitoring devices. Through these advance-
ments, nanomaterials are revolutionizing cardiovascular 
health management, heralding new possibilities for early 
detection, continuous monitoring, and potentially profound 
effects on patient care and outcomes.

This review focuses on wearable biosensors designed 
for cardiovascular monitoring, particularly emphasiz-
ing the integration of nanomaterials. It concisely covers 
essential aspects of cardiovascular monitoring metrics, 
advanced nanomaterials, the fabrication and usage of wear-
able biosensors, their specific applications in monitoring 
cardiovascular health, and their clinical incorporation into 
cardiovascular healthcare. (Fig. 1) [34–38]. Additionally, 
the review engages in an analytical discussion on the chal-
lenges and prospects of nanomaterial-based wearable bio-
sensors and their significant implications for cardiovascu-
lar health management [39]. 

To further augment the sensitivity and performance of 
wearable biosensors in cardiovascular monitoring, the explo-
ration of hierarchical nanocomposites, such as Ni(OH)2/
rGO, presents a promising avenue. This composite mate-
rial, synthesized through chemical deposition on Ni foam, 
exhibits a nanoflower-like morphology comprising ultrathin 
nanosheets or nanopetals with a porous structure. The incor-
poration of reduced graphene oxide (rGO) enhances the 
electrical conductivity, significantly benefiting the proton 
transfer process during sensor operation. Such materials can 
potentially improve the detection of cardiovascular biomark-
ers, offering higher sensitivity and rapid response times, crit-
ical for early diagnosis and continuous health monitoring.
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2 � Cardiovascular monitoring metrics

2.1 � Heart rate

Heart rate (HR), which is indicative of the number of cardiac 
cycles per minute, plays an essential role in cardiovascular 
monitoring [35, 40, 41]. It is well-supported by numerous 
epidemiological studies that resting HR is a critical indi-
cator for evaluating cardiac function. Individuals with a 
high level of cardiovascular fitness usually have a resting 
HR of less than 60 beats per minute (BPM) [42], whereas 
an increased resting HR, exceeding 90 BPM, is associated 
with a higher risk of cardiovascular-related mortality [43, 
44]. Pharmacological interventions can lead to a decrease 
in HR. Therefore, the ability to consistently, instantly, and 
accurately track HR is crucial for both diagnosing and man-
aging CVDs. Each cardiac cycle generates a pulse wave that 
travels once through the circulatory system, making the total 
arterial pulses per minute equivalent to the HR [45]. Wear-
able biosensors are capable of detecting these biomechanical 
signals and reconstructing the pulse waveforms [46, 47]. 
By counting the apical peaks every minute, these biomet-
ric sensors provide precise HR measurements. When these 
devices are combined with units that manage signals and 
transfer data, real-time HR can be displayed on personal 
devices [48]. Wearable biosensors detect biomechanical 

signals and reconstruct pulse waveforms to enable accurate 
HR measurements by counting the apical peaks per minute 
[46, 47]. When integrated with signal management and data 
transfer units, live HR data can be displayed on personal 
devices [48]. Consequently, HR emerges as an easily meas-
ured clinical parameter, particularly relevant for wearable 
biosensors, which may have limited sensitivity and diffi-
culty discerning irregularities or multi-peaked complexities 
in pulse waveforms.

2.2 � Blood pressure

Blood pressure (BP) measures the force that circulating 
blood exerts against the walls of the major arteries [12, 
49]. It is typically represented by two values: systolic and 
diastolic pressures, with normal ranges being less than 120 
mmHg for systolic and less than 80 mmHg for diastolic 
[50]. Conversely, high and low BP values indicate hyper-
tension (HTN) and hypotension, respectively. According 
to the World Health Organization, approximately 1.13 bil-
lion people worldwide are affected by hypertension [51]. 
Diagnosis largely relies on BP measurements. Traditional 
BP cuffs, through standard, can cause discomfort or even 
tissue damage due to the pressure they apply on the arm. 
Furthermore, these measurements are not continuous and 
can be impractical during daily activities. Thus, there is a 

Fig. 1   Schematic diagram illustrating the topics covered in this review on applications of nanomaterials in wearable biosensors for cardiovascu-
lar monitoring
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significant need for a method that is both wearable and reli-
able for prolonged BP monitoring, particularly for individu-
als with chronic conditions [52, 53]. 

2.3 � Pulse wave velocity

Pulse wave velocity (PWV) is a measure of arterial health, 
indicating the speed at which the systolic contraction wave 
moves through the circulatory system [54, 55]. Recognized 
as a powerful diagnostic tool for CVDs, PWV increases as 
arterial walls thicken or become less elastic due to disease or 
aging [54]. PWV is measured by calculating the distance and 
time it takes for a pulse to travel between two arterial points.

The waveform typically includes three main peaks: the sys-
tolic peak, inflection wave peak, and diastolic peak, which may 
become less distinct in older individuals or those with com-
promised arterial health. From these peaks, various metrics 
can be derived, such as the radial artery augmentation index, 
allowing individuals to assess their cardiovascular health 
against standard references. However, relying solely on weak 
pulse waveforms for diagnosis can reduce accuracy. Wearable 
biosensors provide accurate and continuous PWV measure-
ments [7, 56], which, when compared to established norms, 
aid in effective screening and early detection of CVDs. This is 
particularly important in elderly care, where a PWV exceeding 
10 m/s may indicate underlying organ damage [57]. Exploring 
PWV analytically offers insights into the effects of aging and 
various factors on arterial health.

2.4 � Biomarkers

Although various biofluids present opportunities for analysis, 
there are significant challenges when integrating them with 
wearable sensing technologies [58–60]. Blood and interstitial 
fluid (IF) allow for continuous monitoring through implanted 
devices but are difficult to access non-invasively with wearable 
technology. The potential for discomfort and irritation could 
lead to reflex tears, complicating sensor readings [61]. While 
urine offers analytical possibilities, urine-based sensors do not 
fit well with wearable configurations. Similarly, saliva, though 
analytically useful, can be heavily influenced by recent food 
or drink intake, limiting the scope of physiological data it can 
provide [62]. 

In contrast, sweat emerges as a particularly promising 
medium for wearable sensing due to its non-invasive col-
lection and the ability to be generated on demand, espe-
cially from easily accessible parts of the body [63, 64]. 
This makes sweat ideal for continuous monitoring. Sensors 
can be placed close to areas of sweat production for quick 
detection of analytes before they degrade. Despite its own 
set of measurement and interpretation challenges, sweat’s 
advantages have elevated its status in the realm of wearable 
technology. Components of sweat, such as glucose, sodium, 

potassium, lactate, and certain proteins, offer vital insights 
into an individual’s physiological state and health conditions 
[58, 65, 66]. 

Among these biomarkers, cardiac troponins (cTns), par-
ticularly cardiac troponin I (cTnI) and cardiac troponin T 
(cTnT), have emerged as cornerstone biomarkers for the 
diagnosis and risk stratification of acute myocardial infarc-
tion (AMI) [67]. The highly specific nature of cTns for car-
diac injury, coupled with advancements in nanomaterial-
based sensors, has enabled the development of wearable 
biosensors capable of detecting these biomarkers at ultra-
low concentrations in real time. This capability represents 
a paradigm shift in the monitoring and management of 
cardiovascular diseases, allowing for timely interventions 
even before classical symptoms manifest. The integration of 
biosensors for the detection of N-terminal pro b-type natriu-
retic peptide (NT-proBNP), a biomarker for heart failure, 
offers a comprehensive approach to monitoring the cardiac 
health of patients with chronic conditions [68]. By enabling 
continuous, non-invasive monitoring of these key biomark-
ers, wearable biosensors can significantly enhance patient 
care. They provide clinicians with invaluable data for mak-
ing informed decisions and tailoring treatments to individual 
patient needs, thus representing a significant step forward 
in personalized medicine. Non-invasive sweat-sensing tech-
nologies carefully select and measure these analytes based 
on their biomedical relevance and concentration levels in 
sweat, paving the way for innovative approaches to monitor-
ing health through wearable devices.

3 � Nanomaterials and manufacturing 
of wearable biosensors

3.1 � Nanomaterials

3.1.1 � Nanomaterials in wearable biosensors

Nanotechnology is poised to drive significant progress in 
the development of wearable biosensors for cardiovascular 
monitoring [69–71]. This technology primarily involves 
nanoparticles, which are materials where all three dimen-
sions are at the nanoscale [72]. In comparison, nanotubes 
and nanowires have one dimension at the nanoscale, with 
nanowires being solid and nanotubes hollow in structure [26, 
73–75]. For detecting the presence or absence of specific ana-
lytes or biomarkers, zero-dimensional (0D) nanostructures 
like gold nanoparticles are commonly used. In creating tools 
with enhanced sensitivity for quantitative biomarker detec-
tion, one-dimensional (1D), two-dimensional (2D), and three-
dimensional (3D) nanomaterials are utilized. Electrochemi-
cal biosensors, in particular, often incorporate 1D and 2D 
materials such as carbon nanotubes (CNTs), gold nanowires 
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(Au NWs), and graphene due to their high conductivity and 
electrical conductance properties. Metal-organic frameworks 
and their derivatives represent a focus area in the develop-
ment of 3D nanomaterial-based wearable sensors, showcas-
ing the breadth of research in this field [76–78]. 

Figure 2a categorizes nanomaterials by their dimensions 
[79]. Nanoparticles have uniform nanoscale dimensions and 
minimal difference between their longest and shortest axes. 
Conversely, 1D materials have one nanoscale dimension and 
vary between solid and hollow structures, such as nanow-
ires and nanotubes, respectively. Zhang et al. developed a 
polyvinylpyrrolidone (PVP) hydrogel with cross-linking to 
enable analyte-induced reactions (Fig. 2b) [80], showcas-
ing a method for quick and sensitive detection visible to the 
naked eye, allowing for rapid quantitative analysis.

Gold is especially favored in wearable electronics for its 
outstanding electrical conductivity, mechanical strength, 
stability, biocompatibility, and the availability of wet chem-
istry synthesis methods that allow for precise control over 
nanostructures. Among gold nanostructures, gold nanopar-
ticles (AuNPs), gold nanowires (AuNWs), gold nanotubes 
(AuNTs), and gold nanosheets (AuNSs) are particularly 
valued for their stretchability, enhancing their application 
in soft electronic devices (Fig. 2c) [81]. 

3.1.2 � Strategy of nanomaterial synthesis

The synthesis of nanoparticles (NPs) encompasses diverse 
methodologies, broadly categorized into top-down and bot-
tom-up approaches [79, 82]. The top-down method involves 
mechanically breaking down solid materials into smaller 
particles, while the bottom-up approach focuses on creating 
NPs from metal salts or the decomposition of metal pre-
cursors in solvents, offering superior control over particle 
size. The bottom-up technique, preferred for its precision in 
particle size management, involves processes like reduction, 
sonolytic, photolytic, or thermal decomposition [83, 84]. 

The synthesis of CNTs, a significant milestone in nanotech-
nology, is facilitated through various methods, enabling their 
widespread applications [20, 31, 73]. The three main tech-
niques for CNT synthesis include arc discharge, laser ablation, 
and chemical vapor deposition (CVD). Among these, CVD 
stands out for its efficiency, utilizing a suitable catalyst and 
carbon source to produce CNTs. A widely adopted method 
for synthesizing CNT fibers employs wet spinning, wherein 
nascent CNTs, dissolved or dispersed in a liquid medium, are 
extruded through a nozzle and subsequently solidified into a 
fiber via the removal of the dispersant, rendering this approach 
conducive for scaled production. Through the spinning of CNT 

Fig. 2   Representative nanomaterials used in wearable biosensors. a 
Classification of 0D, 1D, 2D, and 3D nanostructures [79]. Copyright 
2022, Elsevier. b Generation of various metal-AIEgen frameworks 
(MAFs) and construction of MAFs@quantum dots-polyvinylpyr-
rolidone (QDs-PVP) hydrogel composite, accompanied by a digi-
tal sensing approach. Reproduced with permission [80]. Copyright 

2022, AAAS. c Different nanomaterials including gold nanoparticles 
(AuNPs), gold nanowires (AuNWs), gold nanotubes (AuNTs), gold 
nanosheets (AuNSs), wavy carbon nanotubes (CNTs), and metal-
organic frameworks (MOFs). Reproduced with permission [81]. Cop-
yright 2021, Wiley-VCH
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socks, flexible ropes of specified dimensions can be directly 
attained, facilitating facile charge mobility and exhibiting 
exemplary electrical and thermal transfer properties, criti-
cal for efficient electron conversion from active materials to 
current carriers. In addition, one research employed CNTs 
to enhance carrier mobility and reduce frequency dispersion 
[85]. The interaction between PVA and CNTs generates longer 
interfacial polarization electric fields, improving the positive 
permittivity response.

The inception of graphene extraction witnessed a 
mechanical exfoliation of graphite utilizing adhesive tape, 
a method which, while yielding premium graphene sheets 
pivotal for foundational investigations, is not congruent with 
the production requisites of larger quantities for expansive 
applications [28, 29, 56, 86]. Subsequent advancements 
have heralded a spectrum of techniques for the generation 
of single or few-layer graphene sheets, spanning from CVD 
to chemical methodologies encompassing the oxidation and 
reduction of graphite, and extending to mechanical exfolia-
tion via ball milling. Among these, CVD emerges as par-
ticularly efficacious in producing large-area graphene sheets 
with minimal structural aberrations. Nonetheless, a salient 
challenge intrinsic to the CVD process resides in the transfer 
of graphene from the metallic substrate to the designated 
target substrate, while preserving its qualitative integrity. 
In contrast, the transformation of natural graphite to GO, 
and its subsequent reduction to reduced GO (rGO), yields 
a product punctuated with imperfections. Despite inherent 
limitations, the economically viable rGO features enhanced 
binding propensities attributed to functional groups, albeit 
with defects that mitigate its electron conductivity and 
cycling capacity. Owing to its formidable electrical and 
electrochemical properties, both intrinsic and functional-
ized, graphene has been adroitly integrated into a plethora 
of sensor modalities, from mechanical to electrochemical.

The synthesis of MOFs involves various methods and 
parameters including temperature, reaction time, pres-
sure, pH, and solvent choice [18–20, 81]. These synthetic 
approaches are pivotal in determining the resulting MOF 
structures and features. Key methods include slow diffu-
sion, hydrothermal (solvothermal) synthesis, electrochemi-
cal, mechanochemical, microwave-assisted heating, and 
ultrasound techniques, each with its specific advantages in 
MOF production. Slow diffusion involves gradual interac-
tion of species through methods like solvent liquid diffu-
sion, where two layers of different density interact at an 
interface, facilitating crystal growth. Hydrothermal (sol-
vothermal) synthesis uses the self-assembly of products 
from soluble precursors within a sealed space (autoclave) 
under autogenous pressure, typically at temperatures rang-
ing from 80 to 260 °C. This method, initially used in zeolite 
synthesis, has been adapted for MOFs, often requiring long 

reaction periods. Microwave-assisted synthesis heats solu-
tions with microwaves to rapidly produce nanosized metal 
crystals, although not commonly used for crystalline MOFs, 
it allows for high-speed synthesis and control over particle 
shape and size. Mechanochemical synthesis involves physi-
cal grinding to induce reactions without solvents, offering an 
eco-friendly alternative. Electrochemical synthesis provides 
precise control over MOF formation by applying electrical 
currents. Each of these methods offers unique advantages 
for MOF synthesis, affecting the crystallinity, purity, and 
physical properties of the final product. The choice of syn-
thesis method is crucial for tailoring MOF characteristics 
for specific applications, highlighting the importance of 
understanding and optimizing these synthetic approaches.

3.2 � Manufacturing

The process of manufacturing wearable sensors involves 
intricate methods to achieve the desired sensitivity and func-
tionality. One notable example is the creation of a polydi-
methylsiloxane (PDMS) sensor film, which features dome-
like pyramids and intersecting supportive walls (Fig. 3a). 
This structure was produced using a bifurcated molding 
method [87]. After applying a gold sputtering technique, a 
conductive Au-PDMS sensor film emerged. The assembly 
of the sensor required the precise alignment of two pieces of 
this conductive film in a face-to-face manner. The sensor’s 
complex microstructure significantly enhances its sensitiv-
ity across a wide pressure range. However, modifying the 
microstructure in the resistive sensing layer to increase sen-
sitivity can introduce several drawbacks [88]. 

Another manufacturing technique involves the develop-
ment of graphene patterns on tape surfaces (Fig. 3b) [86]. 
Initially, a silicon mold with positive patterns, created from 
SU-8 photoresist, is prepared on a silicon wafer surface. This 
mold is then used in a soft lithography process to imprint 
negative patterns onto a PDMS substrate, where “negative” 
refers to channels or depressions on the PDMS surface. Next, 
aqueous suspensions of graphene nanoplatelets are spread 
over the PDMS surface. After drying on a hotplate, a thin 
graphene film covers the entire PDMS surface. Scotch tape 
is then applied and removed to strip away excess graphene 
from non-patterned areas. This step is repeated as necessary 
to remove all unwanted graphene, leaving behind the desired 
graphene within the PDMS’s negative patterns due to its 
subsurface positioning. The final step involves transferring 
these graphene structures onto a target tape by applying and 
then peeling off the tape from the PDMS surface. The Sen-
sor Transfer process enables the application of microscale 
graphene patterns onto the final tape surface, showcasing a 
sophisticated method for fabricating sensitive and functional 
wearable sensors.
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4 � Representative applications 
in cardiovascular monitoring

4.1 � Electrocardiogram

The electrocardiogram (ECG) is a critical diagnostic tool 
widely used in medical practice, particularly by cardiologists 
[89–94]. It provides essential insights into cardiac health and 
broader health metrics, such as electrolyte imbalances or the 
effects of medication [95–97]. The development of wearable 
biosensors has enabled real-time monitoring of cardiac func-
tions, greatly advancing cardiovascular care [98]. 

Nanomaterials have significantly improved the sensitivity 
and clarity of wearable biosensors for heart health moni-
toring [28, 99]. Traditional Ag/AgCl electrodes, although 
effective, often cause skin irritation and suffer from poor 
adherence due to their rigidity [15, 100]. This has led to 
the exploration of flexible dry electrodes made from mate-
rials like silver nanowires (AgNWs), graphene, and con-
ductive polymers, designed for flexibility, breathability, 
and signal clarity [101, 102]. These innovations aim to pre-
serve the accuracy of ECG monitoring by ensuring elec-
trodes conform comfortably to the skin, reducing external 
disturbances, and ensuring consistent signal capture. The 
pursuit of ultra-low impedance electrodes minimizes signal 

disruption from external noise, enhancing the accuracy of 
cardiovascular monitoring [103]. 

Nanomaterials like graphene, carbon nanotubes (CNTs), 
and nanocomposites have been extensively researched for 
their application in ECG monitoring. Graphene, for instance, 
is known for its high electrical conductivity and flexibility, 
which enhances the signal-to-noise ratio (SNR) and allows 
for the development of wearable ECG sensors that can con-
form to the skin’s surface for improved signal acquisition 
[104–106]. However, these advanced biosensors are often 
more complex and costly to produce, potentially limiting 
widespread accessibility. Smartwatches, on the other hand, 
represent a more consumer-friendly option, offering con-
venience and the ability to perform a variety of functions 
beyond ECG monitoring. While smartwatches have made 
significant strides in ECG technology, incorporating dry 
electrodes for non-invasive monitoring, they may lack the 
same level of sensitivity and specificity found in dedicated 
nanomaterial biosensors [107]. This difference can lead to 
variations in accuracy, especially in the detection of subtle 
cardiac anomalies. The form factor of smartwatches may not 
always ensure optimal electrode placement as well which 
could affect the quality of the ECG readings. Despite these 
differences, both technologies play vital roles in monitor-
ing cardiovascular health monitoring. Smartwatches offer 

Fig. 3   Manufacturing processes for wearable biosensors using nano-
materials.  a Diagrammatic representation of the construction of a 
resistive sensor. The illustration details the manufacturing methods of 
an ultra-sensitive pressure sensor. Step I involves creating the PDMS 
mold, Step II involves composing the PDMS film, Step III is related 
to forming the Au-PDMS sensor film, and Step IV pertains to the 
final assembly of the sensor. Reproduced with permission [87]. Copy-
right 2020, Wiley-VCH. b Illustrative depiction of the graphene pat-
terning process on tape: (1) Using soft lithography to create inverse 
patterns on the PDMS substrate. (2) Covering the PDMS surface with 

graphene suspensions. (3) Forming a graphene film on the PDMS. 
(4) Using scotch tape to remove graphene outside the negative pat-
terns. (5) Creating graphene patterns within the PDMS negative 
patterns. (6) Attaching a target tape to the PDMS. (7) Transferring 
graphene patterns to the selected tape. (8, 9) Displaying basic steps 
in graphene patterning and transfer through visual illustrations; scale 
bars are 1 mm. (10) Showing graphene patterns in PDMS structures, 
with 15.4 μm depth and 10.3 μm thickness, successfully transferred 
to polyimide tape. Reproduced with permission [86]. Copyright 2017, 
Wiley-VCH
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an entry point for everyday users to engage with their heart 
health, while nanomaterial biosensors provide a more 
advanced tool for clinical settings or detailed health analysis. 
Integrating these advanced materials and designs into device 
systems poses a challenge but is essential for developing 
next-generation wearable biosensors [108]. 

Machine learning plays a transformative role in analyz-
ing real-time ECG data from nanomaterials-based sensors 
[96, 109, 110]. Modern AI techniques, such as deep-learning 
convolutional neural networks (CNNs), provide rapid ECG 
interpretations comparable to human analysts [111–113]. 
The combination of extensive ECG databases and clinical 
data has led to AI models capable of identifying conditions 
like left ventricular dysfunction, concealed atrial fibrillation, 
and hypertrophic cardiomyopathy, and predicting personal 
attributes such as age, gender, and ethnicity [114, 115]. As 
wearable ECG technology becomes more prevalent, the 
importance of AI interpretations grows [116], promising a 
new era of proactive health management.

Traditional diagnostic methods, including blood pressure 
evaluations and imaging techniques, while effective, have 
limitations [117, 118]. For instance, the intermittent meas-
urements provided by blood pressure cuffs offer incomplete 

information, potentially comprising comprehensive cardio-
vascular care [119, 120]. The ECG, which records the heart’s 
electrical activity through skin-affixed electrodes, typically 
involves a 12-lead setup with 10 electrodes for thorough 
diagnostics. However, simpler three-lead setups are also 
used (Fig. 4a) [121]. 

A novel approach combines ECG and photoplethysmog-
raphy (PPG) sensors to measure pulse arrival time (PAT), 
aiding in continuous BP assessment. PAT measures the time 
difference between the heart’s electrical activity (via ECG) 
and the peripheral pulse detected further along the arterial 
tree (via PPG), offering a non-invasive method for cardio-
vascular monitoring. This technique utilizes flexible, stretch-
able electronics, contrasting with traditional wired sensor 
arrays and marking a significant advancement in patient-
centric care [122–125]. 

Visual illustrations of the device setup (Fig. 4b), as used 
by a 37-week-old patient in the pediatric intensive care unit 
(PICU), highlight the significant differences between this 
advanced system and the traditional, wired sensor array that 
is currently the standard of care [10, 12]. The color of each 
rectangle indicates specific channel connections, while dif-
ferent shades represent various types of electrodes. Patches 1 

Fig. 4   Wearable biosensors for cardiovascular monitoring using 
ECG signals. a Modalities of electro-physiological mechanisms for 
observing cardiovascular vital signs. A tri-electrode bipolar frame-
work designed for the acquisition of ECG data. The genesis and 
characteristics of the ECG signal. The extraction process of PAT is 
derived from ECG and PPG data. Reproduced with permission [126]. 
Copyright 2019, Elsevier. Reproduced with permission [121]. Copy-
right 2019, Springer Nature. b Soft, skin-attached devices designed 
for wireless blood pressure monitoring in pediatric intensive care unit 

(PICU) patients. An image presents a bird’s-eye view of the devices. 
The system consists of a thoracic device equipped for ECG assess-
ments and an extremity device enabled for PPG observations. Repro-
duced with permission [127]. Copyright 2021, Wiley-VCH. c Model 
for signal adjustment and experimental validation. Schematic of the 
circuit utilized in the validation experiment, with varied colors indi-
cating channel connections and different shades symbolizing the 
roles of the electrodes. Reproduced with permission [128]. Copyright 
2020, AAAS
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and 2, each carrying three electrical wound electrodes (EWEs), 
were strategically placed on opposite sides of the chest, with 
a 10-cm gap between them, to record ECG data. In a different 
approach, Patches 3 and 4, which contain two surface electro-
myography (EMG) electrodes similar to those in the endocar-
dial electrodes implant (EEI) and a singular epidermal control 
button (ECB), were affixed to the forearms to capture EMG 
data. Moreover, Patch 5, incorporating two epidermal control 
electrodes (ECE) and one epidermal ground electrode (EGE), 
was positioned on the lower right abdomen.

4.2 � Pulse wave

The inception of a pulse wave is triggered by the heart’s 
pumping action, which sends blood into both major and 
peripheral arteries during the ventricular systole phase, 
causing a rapid increase in blood pressure [56, 129]. This 
change in blood pressure originates from the heart and 
spreads through the arterial network, making pulse waves 
a valuable source of information about the cardiovascular 
system. Therefore, changes in the cardiovascular system can 
alter the pulse wave’s amplitude, velocity, and other funda-
mental properties.

Analyzing arterial pulse waveforms is crucial for moni-
toring heart function, as it allows for the extraction of key 
cardiovascular indicators such as HR, BP, and PWV [130, 
131]. These indicators are closely linked to early changes 
in the arteries, such as stiffness and endothelial dysfunc-
tion, making them essential for detecting various CVDs 
like arrhythmia, atherosclerosis, and coronary heart disease 
[132]. To enable continuous and unobtrusive monitoring, 
a range of wearable pulse sensors utilizing technologies 
like piezoelectric, resistive, capacitive, transistor-based 
pressure, and ultrasonic sensors have been developed [89, 
132, 133]. These devices are gaining popularity due to their 
non-invasive nature and continuous monitoring capability. 
However, challenges such as reduced sensitivity, cost, wear-
ability issues, and the need for external power sources limit 
their widespread use.

The introduction of nanomaterials in cardiovascular mon-
itoring, particularly through wearable biosensors for pulse 
wave analysis, marks a significant advancement in non-
invasive healthcare technologies [7]. Wearable pulse sensors 
developed with technologies like piezoelectric and capacitive 
sensors facilitate continuous, unobtrusive monitoring. They 
are increasingly vital for their non-invasive nature and their 
role in monitoring cardiovascular health during daily activi-
ties. Yet, their adoption is hindered by issues related to sensi-
tivity, cost, and power requirements. Innovative approaches, 
such as textile biosensors that incorporate conductive yarns 
into clothing, are emerging [134]. These sensors can measure 
PWV, an accurate indicator of arterial stiffness and cardiovas-
cular health, underscoring the potential of nanomaterials to 

improve the functionality and accessibility of cardiovascular 
monitoring tools. By integrating these advanced materials into 
wearable technologies, nanomaterials are setting the stage for 
sensitive, efficient, and patient-friendly cardiovascular health 
monitoring solutions, showcasing the transformative impact 
of nanotechnology in medical diagnostics and personalized 
healthcare [135]. 

Figure 5a highlights wearable biosensors as a key bio-
technological innovation in the tracking of pulse waves [7]. 
Placing a wearable biosensor on specific skin regions (refer 
to Fig. 5b) [7], such as the neck (corresponding to the carotid 
artery), arm (aligned with the brachial artery), wrist (associ-
ated with the radial artery), finger (related to the coronary 
artery), and ankle (on the posterior tibial artery), allows it 
to convert pulse activities into electrical signals, which are 
then represented as a pulse waveform. These sensors are par-
ticularly useful for monitoring cardiovascular health during 
physical activities. A textile biosensor, capable of covering 
a wide pressure range and offering various designs (ranging 
from 326 Pa to 326 kPa), demonstrated its ability to track 
arterial pulse waves in a healthy woman before continuously 
and after exercise, showing significant changes in heart rate 
and output voltage amplitude (Fig. 5c) [134]. This textile, 
made from a blend of Terylene, nylon yarns, and standard 
threads, was seamlessly integrated into clothing for non-
invasive pulse wave monitoring (Fig. 5d) [135]. The use of 
textile biosensors for measuring pulse wave velocity (PWV) 
has been validated as a reliable indicator of cardiovascular 
health [136–138]. This is achieved by analyzing the time dif-
ference between pulse waveforms captured at two points—
specifically, between sensors placed on the arm and ankle. 
This method calculates a PWV of 13.63 m/s. Additionally, 
a floral-configured wireless textile biosensor was devel-
oped for pulse wave monitoring, indicating its effectiveness, 
especially in elderly individuals with less elastic arteries, as 
shown by increased PWV and changes in waveform charac-
teristics (Fig. 5d) [136–138]. 

4.3 � Sweat biosensors

Recently, wearable biosensors for point-of-care (POC) appli-
cations have gained significant interest due to their ability 
to monitor health markers non-invasively and in real time 
[28, 139, 140]. These devices, often made with cutting-edge 
nanomaterials, can analyze biomolecules in sweat, offering 
a promising avenue for continuous health monitoring. The 
rise of electrochemical biosensors is noteworthy for their 
capacity to detect a wide range of health indicators, includ-
ing microorganisms, hormones, and metabolites, without 
invasive procedures. The integration of microfluidics, which 
allows for analysis in tiny volumes, with compact and flex-
ible designs has made these wearable technologies more 
user-friendly and practical [141–143]. However, there is 
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still considerable potential for improvement in the accuracy 
and range of physiological data these devices can interpret. 
Advances in nanotechnology could further enhance the 
effectiveness of POC biosensors by incorporating new, more 
sensitive materials.

One breakthrough example is the Flexible Integrated 
Sweat Analyser (FISA), capable of assessing multiple sweat-
based metabolites and electrolytes, as well as skin tempera-
ture, during extended physical activity (Fig. 6a) [144]. This 
device, built on a flexible polyethylene terephthalate [145] 
substrate, ensures a strong connection with the skin and uses 
flexible printed circuit board (fPCB) technology to integrate 
signal conditioning, processing, and wireless communica-
tion. It represents a significant step forward in multiplexed 
sensor technology for sweat analysis, with each electrode 
having a diameter of 3 mm (Fig. 6a).

The challenge of noninvasive glucose monitoring through 
sweat analysis has spurred the development of novel 
approaches. Traditional methods have faced obstacles such 
as inconsistent sweat production, variability in glucose oxi-
dase activity due to the secretion of lactic acid and altera-
tions in ambient temperature, and enzyme delamination 
attributable to mechanical friction and dermal deformation 

[146–148]. The introduction of a wearable device that not 
only monitors glucose in sweat but also administers medi-
cation through the skin in response to glucose levels dem-
onstrates the potential for sophisticated, real-time health 
management (Fig. 6b) [149]. A meticulously engineered 
multilayer patch and the miniaturization of the sensor have 
significantly improved the efficiency of both sweat collec-
tion and the sensing process. The accuracy of glucose detec-
tion is further enhanced by using multiple modes of detec-
tion. Moreover, the compact design of the sensor not only 
makes it highly effective but also allows for its integration 
into a convenient, strip-like, disposable device.

Furthermore, a wearable patch developed by the Gao 
group showcases the ability to detect inflammation mark-
ers like CRP in perspiration, integrating methods to induce 
sweat, channel it for analysis, and measure relevant param-
eters for accurate CRP calibration (Fig. 6c) [150]. It com-
bines iontophoretic perspiration induction, microfluidic 
pathways for sweat sampling, and reagent transport, with a 
graphene-incorporated sensor array for CRP measurement. 
The sensor uses an electrode equipped with anti-CRP anti-
bodies attached to gold nanoparticles. It also assesses ionic 
strength, pH, and temperature to calibrate the CRP sensor 

Fig. 5   Wearable biosensors for pulse wave monitoring. a A fabric-
based wearable biosensor positioned over the radial artery to detect 
pulse wave activity. Reproduced with permission [7]. Copyright 
2021, Cell Press. b Wearable biosensors are placed at different arte-
rial locations for real-time tracking of pulse wave activity. Repro-
duced with permission [7]. Copyright 2021, Cell Press. c Wearable 
sensor for heart rate measurement. Images of a clothing-like triboe-
lectric sensor featuring random stitch designs tailored for pulse wave 
tracking. Changes in the pulse waveform, detected by the apparel-
integrated triboelectric sensor, before and after physical exertion. 
Reproduced with permission [134]. Copyright 2018, RSC. d Wear-

able biosensor for pulse wave velocity measurement. Diagrammatic 
representation of an all-textile triboelectric sensor grid. Live track-
ing of the pulse waveform at the wrist using an all-textile triboelec-
tric sensor grid. A schematic representation of a wireless textile sen-
sor, featuring a silver-coated fabric used as the foundational layer 
and electrode, overlaid by a textile with a raised floral design. Pulse 
waveforms were remotely recorded utilizing a textile sensor worn by 
a 75-year-old female. Reproduced with permission [135]. Copyright 
2020, AAAS. Reproduced with permission [61]. Copyright 2020, 
Cell Press
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in real time. In participants with chronic obstructive pul-
monary disease (COPD), current or past infections, or heart 
failure, the elevated CRP levels detected by the patch corre-
late strongly with serum protein levels. Wearable biosensors 
that can instantaneously and sensitively detect inflammatory 
proteins in sweat could improve the management of chronic 
diseases [39]. 

In Fig. 6d, research from the Joseph Wang group intro-
duces a nascent exploration of an entirely printed, transient 
tattoo-styled glucose sensor designed for non-invasive glucose 
monitoring [151]. This represents the first instance of a wear-
able, flexible epidermal diagnostic apparatus that combines 
reverse iontophoresis for extracting interstitial glucose and 
an enzyme-based amperometric biosensor. In vitro studies 

Fig. 6   Wearable biosensors for cardiovascular health monitoring.  a 
The flexible integrated sensing array (FISA) performs comprehen-
sive sweat analysis using a multi-sensor sensor array and a flexible, 
wireless printed circuit board, worn on the wrist. Included sensors: 
glucose, lactate, sodium, potassium, temperature. Reproduced with 
permission [144]. Copyright 2016, Springer Nature. b A patch for 
sweat-driven glucose monitoring/treatment, worn on the forearm, 
features a porous layer for sweat absorption and functions effectively 
with minimal sweat. Reproduced with permission [149]. Copyright 
2016, AAAS. c A wearable biosensor provides non-invasive, wireless 
monitoring of inflammation by measuring sweat levels of CRP and 

additional metrics using an iontophoretic component, a microfluidic 
component, and a flexible light light-emitting graphene sensor array. 
Reproduced with permission [150]. Copyright 2023, Springer Nature. 
d A tattoo-style glucose sensor employs reverse iontophoresis, show-
cased with a device prototype adhered to the skin, demonstrating the 
utility of an interstitial fluid glucose sensor. Reproduced with permis-
sion [151]. Copyright 2015, ACS Publications. e Non-invasive glu-
cose monitoring is achieved through a transcutaneous, path-selective 
iontophoretic approach using small, graphene-based pixel arrays, 
with four discrete extraction and detection spots. Reproduced with 
permission [152]. Copyright 2018, Springer Nature
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show the sensor’s linear response to glucose concentrations 
within the physiological range, while effectively minimizing 
interference from commonly present electroactive substances. 
This initial study suggests that the tattoo-based iontophore-
sis-sensor method could streamline diabetes management 
and might be extended for non-invasive monitoring of addi-
tional analytes in the interstitial fluid that are of physiological 
importance. The system extracts glucose from the interstitial 
fluid using electroosmotic flow, moving through singular, 
optimal follicular routes in the skin made accessible through 
the sensor’s pixel array (Fig. 6e) [152]. Continuous in vivo 
monitoring of interstitial fluid glucose using this pixel array 
accurately reflects blood sugar levels in healthy human par-
ticipants, presenting a method that could allow for significant 
glucose monitoring in people with diabetes, eliminating the 
need for invasive finger-prick tests.

4.4 � Bioimpedance

Bioimpedance (BI) operates by placing minimal current and 
voltage electrodes on the body, transmitting a slight alternat-
ing current through it. This process enables the estimation 
of body composition through bioimpedance measurement 
[153–157]. Deviations in voltage, or in some cases, radiof-
requency signals, stemming from changes in blood volume 
and velocity within the thoracic cavity, are crucial for calcu-
lating parameters such as stroke volume and cardiac output 
[158]. Similarly, alterations in thoracic impedance provide 
information about lung fluid levels [159]. 

Conventional weighing scales often utilize bioimpedance 
to analyze body composition, but recent advancements have 
made it possible to incorporate this feature into wearable 
devices [160, 161]. Wearable vests that measure thoracic 
impedance have shown effectiveness in monitoring pulmo-
nary fluid in patients with heart failure, potentially improv-
ing their clinical outcomes. Research on using such a vest 
for patients recovering from acute heart failure has demon-
strated its algorithmic effectiveness in detecting subsequent 
heart failure episodes [162]. Bioimpedance is also used to 
measure PWV and estimate BP [129]. A wearable device 
attached to the wrist employs this technology with only 
minimal variations in blood pressure readings, in contrast 
to traditional devices [163]. 

However, the technology faces challenges, including 
movement perturbations, especially among ambulatory 
patients, and the positioning of electrodes, which can 
affect the signals. This necessitates careful consideration 
during the development of algorithms. Various factors, 
such as skin conditions, adhesive types, pregnancy, metal-
lic implants, and physiognomy, may affect measurement 
accuracy [163]. The efficacy of this method across dif-
ferent practical scenarios remains a topic of exploration, 
with existing data showing mixed results. Despite the 

availability of traditional BP monitoring devices, they are 
often seen as intrusive and burdensome.

An electrical bioimpedance-based wearable BP monitor-
ing system introduces a novel approach, using ultra-thin, 
self-adhering, lightweight graphene electronic tattoos as 
the interface between the device and the skin [164–166]. 
This system can monitor arterial BP for periods exceeding 
300 min, a significant improvement over previous durations, 
with the graphene tattoos providing BP data accurately 
within industry standards.

Bioimpedance readings (Bio-Z) allow for deep tissue 
sensing due to the significant penetration depth of electri-
cal currents, enabling effective monitoring of hemodynamic 
parameters directly from arteries. Graphene electronic tat-
toos (GETs), being self-adhering and having minimal 
impedance, maintain a stable position on the skin, ensuring 
consistent sensing over extended periods. The graphene-
integrated BP (Z-BP) solution outlined here shows durabil-
ity against electrode displacements and sensor movement. 
These unique GETs allow for extended BP monitoring 
(beyond 5 h, a substantial advancement from previous stud-
ies) during various activities, with the measurements dem-
onstrating remarkable accuracy. The proposed Z-BP system 
represents a significant step forward in improving wearable 
BP monitoring methods.

4.5 � Ultrasound

Recently, there has been a significant surge of interest in 
the area of flexible acoustic bioelectronics, with a particu-
lar focus on flexible ultrasound bioelectronics [167, 168]. 
This burgeoning field is witnessing innovative develop-
ments, including an adhesive ultrasound device designed 
for prolonged, continuous imaging of various organs, and a 
uniquely stretchable ultrasound device optimized for cardiac 
imaging. These inventions symbolize two divergent evolu-
tionary trajectories within the sector.

Wearable ultrasound technologies have seen remarkable 
innovation, particularly in the development of miniaturized, 
flexible systems that can be directly integrated into wearable 
devices for continuous monitoring. These systems leverage 
cutting-edge materials and fabrication techniques to achieve 
high-resolution imaging capabilities while maintaining flex-
ibility and comfort for the user. One notable breakthrough 
involves the use of liquid metal transducers, which offer 
exceptional acoustical properties and can be embedded 
in elastic carriers, enabling the device to stretch and bend 
without compromising its functional integrity [124]. This 
development paves the way for real-time, on-the-go ultra-
sound imaging, offering unprecedented opportunities for 
monitoring vital organs and blood flow in a non-invasive 
manner. Furthermore, advances in AI and machine learning 
algorithms have enhanced the capability of these wearable 
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devices to analyze ultrasound data in real time, providing 
immediate insights into the user’s health status. This inte-
gration of smart analytics into wearable ultrasound devices 
represents a significant step forward in personalized health-
care, allowing for early detection of abnormalities and timely 
medical intervention.

The adhesive ultrasound device utilizes a compact, rigid 
ultrasound probe that is attached to the skin using a coupling 
agent. This agent is a durable, moisture-retaining, and bio-
compatible blend of hydrogel and elastomer, emphasizing 
adhesive strength over device flexibility [169, 170]. This 
rigid nature of this ultrasound probe enables high array den-
sity and exceptional image resolution. It is versatile enough 
to image a wide range of internal structures, such as the 
heart, muscles, and blood vessels, and maintains consistent 
image quality even during physiological movements. Dem-
onstrating reliable performance, this device can be used for 
extended, continuous periods of up to 48 h.

Conversely, the inherently stretchable ultrasound imager 
embodies a modern design philosophy aimed at creating 
thin, adaptable biodevices that conform to the body’s con-
tours [168, 171]. Encapsulated in a triblock copolymer, this 
device features piezoelectric transducer arrays and elec-
trodes made from a liquid metal composite. It boasts a low 
Young’s modulus of 921 kPa and an impressive stretchability 
of approximately 110% [167]. When evaluating its imaging 
capabilities—including spatial and signal clarity, locational 
precision, dynamic range, and image contrast—as well as its 
effectiveness in echocardiography from various angles, move-
ment tracking, and automated image analysis, this device offers 
a promising model for wearable ultrasound imaging. However, 
the use of inherently stretchable materials faces limitations due 
to concerns over their durability and reliability, suggesting they 
may not match the high-end performance of traditional, rigid 
probes [123, 172, 173]. Furthermore, the stretchable imager 
encounters such as reduced image clarity, variable image qual-
ity during movement, restricted continuous imaging durations, 
susceptibility to external interference, and a higher risk of 
device malfunction.

4.6 � Phonocardiogram (PCG)

Cardiac auscultation, the practice of listening to heart 
sounds, is a quintessential diagnostic tool. It offers deep 
insights into the functioning heart valves, and blood flow 
patterns, and can reveal various cardiac issues such as 
arrhythmias, valve abnormalities, and heart failure [40, 
174]. The phonocardiogram, which visually represents these 
sounds by charting time against amplitude, is crucial for 
early detection of cardiovascular diseases. The push towards 
smaller, more flexible heart sound sensors is significantly 
driven by advancements in micro-electromechanical systems 
(MEMS).

To overcome common issues like sensor malfunction due to 
motion or on hairy skin, the team led by Firat Güder developed 
an acoustic coupling module [7, 175]. They used a 3D-printed 
polylactic acid (PLA) mold to fabricate a water-silicone com-
posite acoustic transducer. This device, combined with a con-
ventional microphone and worn at the waist, outperforms tra-
ditional stethoscopes in heart sound detection.

In the domain of sensor flexibility, the Takao Someya 
team has engineered an ultra-sensitive mechanical acous-
tic sensor made entirely of nanofibers. This sensor stands 
out for its air permeability, created using an electrospinning 
technique [176, 177]. It recorded signals demonstrate an 
exemplary signal-to-noise ratio.

Despite these advancements in creating flexible sensors 
for monitoring heart sound signals, challenges persist. Heart 
sounds are subtle and can be easily masked by background 
noise. Therefore, improving the sensitivity and noise resist-
ance of these sensors is essential for future research.

5 � Challenge and practice of wearable 
biosensors in cardiovascular healthcare

The clinical application of wearable biosensors in cardio-
vascular healthcare faces challenges [145, 178]. Advances 
in microelectronics have aided device miniaturization, yet 
further improvements are essential for performance enhance-
ment and user-centric design. Signal processing in user-
friendly devices can vary, leading to potential inaccuracies, 
highlighting the need for digital education and training, 
especially in remote areas. The sensitivity of wearable sys-
tems is critical for accurate disease diagnosis, with materials 
like graphene enhancing biosensor effectiveness. Integra-
tion of nanomaterials with technologies like 5G, AI, and IoT 
promises revolutionary developments, though obstacles such 
as cost, biocompatibility, and standardization persist. Moreo-
ver, the rise of wearable technology introduces data privacy 
concerns, necessitating advanced cybersecurity measures 
and clear data management agreements to protect sensitive 
health information. Addressing these challenges is vital for 
the successful clinical deployment of wearable biosensors, 
offering comprehensive and continuous monitoring for car-
diovascular health.

Advancements in signal capture, medical diagnosis, tri-
age, and data retrieval have underscored the importance of 
collected data. However, the adoption, processing, and uti-
lization of these innovative technologies come with their 
unique challenges (Fig. 7a) [178]. The area of AI-integrated 
ECG (AI-ECG) deployment is still evolving. This includes 
how patients interact with AI-ECG results, the integration 
of AI-ECG functionalities with digital health records, safe-
guarding patient data, and considerations related to costs and 
reimbursement (Fig. 7b) [145]. 
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5.1 � Risk assessment and lifestyle interventions

Traditional methods for assessing global cardiovascular 
disease risk have focused on clinical scores that project a 
10-year risk [179–181]. However, these scores often fail to 
reflect the continuous changes in an individual’s risk, which 
are influenced by daily habits. Despite the challenges of 
incorporating lifestyle choices into these assessments, wear-
able technology offers a new approach. It allows for a more 
detailed, dynamic, and accurate assessment of cardiovascu-
lar risk over an individual’s lifetime [182–184]. Research 
has shown a negative correlation between physical activity, 
measured by wearables, and overall mortality. Activities of 
moderate to high intensity have been found to provide sig-
nificant benefits in reducing mortality risk, as demonstrated 
in various American and Swedish studies.

5.2 � Screening and diagnosis

Hypertension is a major health concern, leading to recom-
mendations for early screening to prevent cardiovascular 
complications [185, 186]. Wearable devices, especially those 
worn on the wrist that can measure BP, offer a convenient 

alternative to conventional arm BP devices for everyday 
use. These devices could be key in detecting hypertension, 
facilitating BP self-monitoring, and adjusting antihyperten-
sive medication dosages. However, it is crucial to conduct 
specific studies to validate the effectiveness of wrist-worn 
devices in these contexts [186, 187]. The development of 
sensors for continuous BP monitoring could allow for BP 
evaluation during sleep or physical activities, where tradi-
tional methods are not practical. This continuous monitoring 
could help detect conditions like cardiac arrest or significant 
BP drops, potentially enabling timely interventions.

5.3 � Heart failure

For those managing heart failure [49], wearable devices 
can provide essential insights by tracking metrics such as 
physical activity, heart rate, recovery rate, and heart rate 
variability (HRV) [188–190]. For example, the stress test (a 
6-min walk) quantified through a step tracker can reveal the 
severity of HF and associated mortality risk. HRV data can 
help identify individuals with mild symptoms who may not 
benefit significantly from cardiac resynchronization therapy. 
This makes wearables that monitor HRV vital in predicting 

Fig. 7   Clinical applications of wearable biosensors in cardiovascu-
lar healthcare. a Emerging frameworks for cardiac monitoring using 
wearable devices. Reproduced with permission [178]. Copyright 

2021, Springer Nature. b Framework for integrating AI-ECG analy-
sis in clinical settings. Reproduced with permission [122]. Copyright 
2021, Springer Nature
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patient responses to treatments. Additionally, emerging bio-
mechanical sensors, like dielectric sensors, show promise 
in guiding HF treatments but require thorough testing and 
validation before clinical integration.

6 � Challenges and outlooks

6.1 � Portability

The comprehensive detection system, including wearable 
sensors, electrical circuits, and the battery, requires both 
easy transportability and a user-centric design [191, 192]. 
Although portability is crucial in cardiac monitoring, min-
iaturizing the device poses a significant challenge. Recent 
progress in microelectronics has led to smaller circuits, mak-
ing it easier to develop small devices for heart monitoring. 
However, as technology advances, there are many opportuni-
ties to further refine and improve device designs to enhance 
performance, which need careful exploration.

6.2 � Accessibility

Wearable devices for cardiac monitoring are noted not just 
for their small size but also for being user-friendly [182, 185, 
193, 194]. However, signal processing in these devices faces 
several challenges. Differences in diagnostic results for heart 
conditions during various testing phases can confuse both 
medically trained and lay users, leading to potential inaccu-
racies. People with laboratory training are prone to mistakes, 
especially in ensuring test quality. Digital platforms could 
help educate the public about these accessible technologies. 
For disease diagnosis, providing thorough training based on 
established protocols, especially to healthcare workers in 
geographically remote areas, is essential.

6.3 � Fidelity

Accurate diagnosing of cardiovascular diseases can be dif-
ficult when the signals are complex [195]. The sensitivity 
of wearable systems is key for testing. Disease signals often 
only slightly differ from those in healthy scenarios. Here, 
advanced materials like graphene or carbon nanotube-based 
electrochemical biosensors are valuable. Advances in nano-
technology have led to smaller, more effective wearable 
devices with better integration and interfacing capabilities.

6.4 � Integration

Nanomaterials, along with technological advancements 
like 5G connectivity, AI, and the Internet of Things (IoT), 
have the potential to transform the development of portable, 

intelligent, and biocompatible devices [96, 182, 194, 196]. 
Wearable biosensors, like smartwatches and fitness bands, 
have become very popular for comprehensive health moni-
toring. Compared to current smartwatch technologies, nano-
material biosensors offer better sensitivity, miniaturization, 
and the ability to monitor multiple parameters, but they also 
face challenges with cost, manufacturing complexity, bio-
compatibility, and standardization. These biosensors enable 
the use of advanced technologies, like the Internet of Medi-
cal Things (IoMT) for testing, AI for predictive analysis, 
faster testing methods, bioinformatic data exchange, and 
timely medical interventions. IoMT allows for efficient data 
gathering and analysis from biosensors, with AI and ML 
refining this data to improve the design and functionality of 
wearable biosensors continuously.

6.5 � Data protection and management

The rise of wearable technology highlights three main concerns 
about data privacy in today’s big data environment, where many 
entities seek access to large data sets to drive innovation [197, 
198]. Protecting sensitive wearable data from potential breaches 
is critical. Anonymizing data by removing personal identifiers 
is one approach, but the potential use of metadata to re-identify 
users’ needs consideration. Adopting advanced cybersecurity 
measures, like blockchain technology, may become crucial, 
especially as data breaches become more common with the 
ongoing transfer of data across platforms. With the large vol-
umes of data generated by consumer wearables, setting clear 
expectations between users and healthcare providers is vital. 
New data agreements and electronic consents should clearly 
outline aspects such as how data is transmitted, how often it is 
reviewed, who has access to it, and how important data findings 
are communicated.

6.6 � Artificial intelligence and machine learning

Machine learning, a dynamic segment of artificial intelligence, 
is gaining traction in the realm of cardiovascular healthcare 
[178]. It has demonstrated potential by identifying mean-
ingful patterns within intricate datasets, such as diagnosing 
myocardial ischemia using cardiac CT scans and interpreting 
arrhythmias through wearable ECG devices. Furthermore, 
machine learning enables innovative communication meth-
ods between patients and healthcare professionals by leverag-
ing automatic classification of biosensor data from various 
sources. This technology assesses the hemodynamic impacts 
of heart failure, arrhythmias, or coronary events, facilitating 
swift patient triage without the necessity for creating, testing, 
and implementing complex algorithms independently. How-
ever, machine learning is not without its challenges, including 
limitations due to data noise and training datasets that may 
not fully capture the nuances of clinical environments. For 
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instance, one study highlighted that while a third of ECGs 
were not decipherable by consumer gadgets, expert analysis 
could classify them. Additionally, a pilot study showed that 
while data from a smartwatch-based PPG sensor, analyzed 
through a deep neural network, could accurately diagnose 
atrial fibrillation in stationary patients, it fell short of accuracy 
in patients who were moving.
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