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Abstract Harnessing the unique attributes of metal-based

nanowires (MNWs), such as their adaptability, high aspect

ratio and conductivity, this review elucidates their bur-

geoning role as a distinct class of nanomaterials poised to

revolutionize sensor technologies. We provide an in-depth

examination of MNW assembly methods, highlighting

procedural details, foundational principles and perfor-

mance metrics. Manufacturing electrochemical biosensors

and field-effect transistor (FET) biosensors by MNWs

offers advantages such as enhanced sensitivity, improved

signal-to-noise ratios and increased surface area for effi-

cient biomolecule immobilization. MNWs contribute to

precise and reliable biosensing platforms, optimizing the

performance of these devices for various applications,

such as diagnostics and environmental monitoring.

Electrochemical biosensors are noted for their speed, cost-

effectiveness, ease of use and compatibility with compact

instrumentation, offering potential for precise biomarker

quantification. Meanwhile, FET biosensors demonstrate the

potential for early-stage biomarker identification and

pharmaceutical applications with nanoscale materials like

MNWs, thereby enhancing their detection capabilities.

Additionally, we explore the prospects of integrating

machine learning and digital health with MNWs in elec-

trical biosensing, charting an innovative path for future

advancements in this field. This advancement is facilitated

by their electronic properties, compact design and com-

patibility with existing technologies. We expect this review

to highlight future trends and challenges in the use of

MNWs for biosensors.
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1 Introduction

In the landscape of nanotechnology, metal-based nano-

wires (MNWs) have emerged as a focal point of academic

and research interest [1, 2]. This is attributed to their

exceptional properties when compared with their macro-

scale counterparts, as documented in numerous scholarly

articles [3–7]. The unique characteristics of MNWs, par-

ticularly in one-dimensional (1D) electronic density states,

can be fine-tuned by manipulating specific parameters [8].

This capability has been especially beneficial in electro-

chemical applications, where MNWs have been shown to

significantly enhance surface area, and consequently,
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analytical performance [9–11]. Additionally, the distinctive

material structures of MNWs confer them with enhanced

electrical conductivity and a larger specific surface area

[12–16], thus reducing junction resistance and contributing

to their utility in various applications, such as electronics,

sensors, photodetectors, energy storage and flexible elec-

tronics [17–19].

Recent advancements in the field have highlighted the

significant role of MNWs in electrochemical sensing and

biosensing [20–24]. A plethora of studies have substantiated

the multiple benefits offered by MNWs in these domains

[25–27]. Primarily, the extensive surface area of MNWs is

instrumental in reducing current densities and overpoten-

tials, thereby greatly improving electrocatalytic efficiency

and selectivity in sensing applications [28–30]. Furthermore,

this expansive surface area is pivotal in enhancing redox

conversions, which significantly boosts analytical sensitivity

in both biosensing and electrochemical sensing. This

increased sensitivity plays a crucial role in improving the

precision and accuracy of these analytical methods. Addi-

tionally, the considerable surface area of MNWs enhances

reproducibility and provides resistance to fouling, factors

that are critical for the long-term stability and reliability of

sensing platforms, especially in complex and dynamic

environments [31, 32]. Lastly, the unique surface topology

of MNWs facilitates improved interactions with biomole-

cules, a feature of paramount importance in biosensing

applications, particularly in complex biological systems

where the functionality often hinges on the proximity and

interaction of various biomolecules, such as DNA, RNA,

proteins, enzymes and cellular components [33–36].

In addition, owing to their unique properties such as

high aspect ratios, tunable surface chemistry and excellent

electrical conductivity, MNWs have emerged as promising

candidates for enhancing field-effect transistor (FET)

biosensor performance [37]. Researchers have been

actively exploring novel synthesis methods and surface

functionalization techniques to tailor MNWs for specific

biomolecular interactions. The integration of MNWs into

FET biosensors has demonstrated notable advancements in

the detection of various biomolecules, such as DNA, pro-

teins and other analytes relevant to biomedical and envi-

ronmental applications [38, 39]. Studies have focused on

optimizing MNWs based FET configurations, refining the

immobilization of recognition elements, and improving

signal transduction mechanisms. Furthermore, the devel-

opment of MNWs based FET biosensors has expanded

beyond fundamental research to address practical chal-

lenges, such as reproducibility, scalability and long-term

stability, bringing these sensors closer to real-world

applications.

This article aims to explore two primary methodologies

employed in the construction of MNW networks: the

bottom-up approach and the top-down approach. The bot-

tom-up approach involves solution-based methods to

organize nanowires, which may necessitate additional steps

for bonding overlapping wires [40]. In contrast, the top-

down approach entails applying a metal layer onto a tem-

plate or barrier to create a continuous network, thereby

effectively eliminating wire-to-wire junction resistance

[41, 42]. The integration of MNWs in electrochemical

sensing and biosensing capitalizes on their inherent

advantages, such as enhanced selectivity, increased sensi-

tivity, improved stability and augmented interaction capa-

bilities with biomolecules. Collectively, these attributes

underscore the potential of MNWs as a promising avenue

for advancing the efficacy and precision of electrochemical

and biosensing technologies.

MNW sensors have shown significant progress in vari-

ous applications, such as sensing gases, chemicals and

biological entities. The ultimate goal of the development of

such sensors is to achieve high sensitivity, selectivity and

reliability, along with practical considerations such as cost-

effectiveness and scalability for mass production. How-

ever, there are some key challenges and gaps that existed in

the development of MNW sensors [43, 44]. Firstly,

enhancing the sensitivity and selectivity of MNW sensors

remains a critical goal. Improving the ability of these

sensors to detect specific analytes at low concentrations

and minimizing interference from other substances is

essential. Secondly, long-term stability and durability are

important for practical applications. Some MNW may be

susceptible to environmental conditions, leading to per-

formance degradation over time. Achieving robust sensors

that can withstand extended usage is a challenge. Thirdly,

adapting MNW sensors to work effectively in real-world

conditions, which may involve complex and variable

environments, is a challenge. This includes addressing

issues related to humidity, temperature and other external

factors that can affect sensor performance. Lastly, devel-

oping low-power consumption sensors is important, espe-

cially for applications where energy efficiency is a critical

factor, such as in wearable devices and remote sensing

applications. It’s important to note that researchers con-

tinue to work towards overcoming these obstacles and

pushing the boundaries of what is possible with MNW

sensors.

Certainly, the development and use of MNW sensors,

like any emerging technology, come with ethical and

environmental considerations. The production and synthe-

sis of MNW sensors, may involve the use of energy-in-

tensive processes and chemicals. It’s important to assess

and minimize the environmental impact associated with the

manufacturing and disposal of these materials. Proper

disposal of nanomaterials is essential to prevent environ-

mental contamination. Therefore, the rules related to
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environmental assessment and recycling pathways need to

be specified early to ensure a strategy for responsible dis-

posal or recycling at the end of the MNW equipment life

cycle. Previous reviews focus on the application of metal-

based materials in a wide range of sensors, or only list the

sensing applications of single metal-based materials. This

review emphasizes the significance of MNWs in electrical

biosensing. As far as we know, no broad review based on

MNWs in electrical biosensing has been reported here.

2 Synthesis of MNWs

2.1 Electrodeposition via template assistance

MNWs can be synthesized using either template-based or

template-free methods. Template-based synthesis involves

using templates, either hard or soft, to guide the growth of

nanowires, allowing for controlled size and shape, ordered

arrays and potential for multicomponent structures [45].

Figure 1a presents the template-assisted approach serves as

a systematic and efficient means for fabricating MNWs

[23, 46, 47]. These templates feature finely-tuned cylin-

drical pores, which adopt the pore geometry to facilitate

MNWs formation when filled with a chosen material. The

critical first step entails choosing a suitable template, with

considerations extending to mechanical and chemical

resilience, pore geometry, size, and the material of the

template. Anodic alumina oxide (AAO) is highly preferred

substrate materials for MNWs synthesis [48, 49]. The

versatile properties of AAO, such as variable pore sizes,

structural strength and thermal stability, make it a prime

candidate for template-based electrochemical deposition

(Fig. 1b). Their prevalent use in filtration membrane fab-

rication ensures compatibility with MNWs synthesis.

Derived from anodizing pure aluminum films in acidic

solutions, alumina templates are highly valued for their

homogeneous pore distribution and high pore density [50].

The adaptable nature of the anodization process allows

pore diameters to range from a few nanometers to 200 nm.

Moreover, alternative porous media, such as porous silicon,

zeolites, carbon nanotubes (CNTs), and unique biomolec-

ular structures such as DNA, have also been investigated

for their template potential [51, 52]. Although electro-

chemical deposition is an effective method for the syn-

thesis of metal-based nanowires, there are still some

potential challenges in terms of scalability, structural

control, and dimensional homogeneity that require in-depth

Fig. 1 Template-assisted synthesis of MNWs. a Schematic illustration of electrodeposition of MNWs by a template-assisted method.
Reproduced with permission from Ref. [23]. Copyright 2010, WILEY–VCH. b Schematic representation of AAO template and steps
involved in preparation of NWs. Reproduced with permission from Ref. [48]. Copyright 2016, Elsevier. c Schematic illustration of
synthesis of magnetic nanowires using a template-assisted electrodeposition technique. Reproduced with permission from Ref. [58].
Copyright 2020, Royal Society of Chemistry
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research and technology optimization [53]. Firstly, the

scalability of electrochemical deposition is an important

issue. When preparing metal-based nanowires on a large

scale, there is a need to ensure that the process is repro-

ducible and efficient to meet the demands of industrial

applications. This may involve optimizing electrochemical

deposition conditions and developing automated produc-

tion processes. Secondly, the structure of the resulting

metal-based nanowires may be affected by a number of

factors, which is also a key aspect to assess. Factors

affecting the structure include the potential of electrode-

position, solution composition, electrode material and

experimental conditions. Understanding how these factors

affect the morphology, size and crystal structure of nano-

wires is essential to precisely control and tailor the prop-

erties of MNWs [45]. In addition, electrochemical

deposition may face challenges related to the inhomo-

geneity of the nanowire growth rate, which may lead to

inhomogeneity in the size distribution [54]. Addressing this

issue may involve a better understanding of the relationship

between current density and reaction rate, as well as opti-

mizing experimental conditions to ensure uniform growth.

Figure 1c shows the synthesis system typically com-

prises three electrodes, resembling a standard electro-

chemical setup [55–59]. An Ag/AgCl electrode serves as

the reference electrode, while a platinum wire functions as

the counter electrode. After making the electrical contacts,

the template is placed at anode and a platinum mesh is used

as counter-electrode. The deposition current and voltage

are controlled using the reference electrode, where the

electric field between the working and counter electrodes

forces the free ions to be deposited in the pores. MNWs

proliferate upon a distinct substrate designated as the

working electrode. Notably, the length of MNWs can be

regulated by adjusting the volume of metal deposits

through charge control. To maintain the structural and

compositional integrity of MNWs, rigorous characteriza-

tion methods are essential. Conventional geometric

parameters, such as length, diameter and chemical com-

position, are used to define MNWs. Several techniques are

employed for verification, with electron microscopy,

including transmission electron microscopy (TEM) and

scanning electron microscopy (SEM), serving as a

cornerstone in the characterization of MNWs [60, 61].

SEM is particularly advantageous due to its versatility in

showcasing a diverse array of MNW dimensions and pro-

viding a comprehensive perspective on MNWs morphol-

ogy and surface architecture. Although TEM offers

superior magnification, SEM remains the preferred method

for visualizing MNWs across a broad size range, spanning

from nanometers to micrometers. This approach not only

yields a nuanced understanding of MNWs but also enables

detailed surface characterization. The significant depth of

field conferred by SEM further permits evaluations of bulk

materials [62–64]. Moreover, the capability of SEM to

scrutinize large areas proves critical for understanding the

spatial distribution of nanomaterials across various sur-

faces, shedding light on disparities in size distribution.

While TEM excels in the high-magnification study of ultra-

fine (sub-nanometer) MNWs, field-emission SEM

(FESEM) specializes in investigating MNWs distribution

on electrode surfaces. FESEM distinguishes itself by cap-

turing high-fidelity images under milder conditions, thus

circumventing the need for metallic coatings on the sam-

ples [65, 66].

In addition to visual methods, energy-dispersive X-ray

spectrometry (EDS) plays a critical role in elemental

analysis, offering in-depth insights into MNWs composi-

tion and purity [67–70]. X-ray photoelectron spectroscopy

(XPS) provides a comprehensive elemental profile, eluci-

dating surface chemical details like empirical formulations

and the chemical states of surface-bound entities [71, 72].

When it comes to electrochemical evaluation, cyclic

voltammetry (CV) and electrochemical impedance spec-

troscopy (EIS) are preferred, assisting in comparing elec-

trode behaviors and investigating the complex dynamics at

modified electrode interfaces [73, 74].

The process of electrochemical deposition for MNWs

hinges on the reduction of metal salts, wherein the required

electrons are supplied by an external electrical source,

often a potentiate [75]. The cost-effectiveness of this

approach, especially when integrated with membrane

methods, has amplified the attractiveness of MNWs.

Specifically, the direct template electrodeposition tech-

nique relies on the in-pore reduction of metal cations [76].

Upon the application of a potential, these cations migrate

through the channels to congregate at the cathode, thereby

initiating nanowires (NW) growth within the template. This

uncomplicated and budget-friendly technique is typically

executed under ambient conditions, obviating the need for

specialized equipment. This electrochemical method stands

out due to its inherent adaptability, allowing the deposition

of a wide array of metals such as Ni, Cu, Au, Zn, Ag, Fe,

Pt, Ga, Al and Si [55, 77]. This enables the fabrication of

composite MNWs by sequentially depositing different

materials, simply by switching the electroplating solution

or tweaking the deposition conditions. For example, multi-

segmented MNWs of Au and Ni can serve specialized

functions like thiol chemistry and magnetic regulation,

respectively. An alternative pore-filling approach employs

molten metals, where the template is submerged in molten

metal, followed by the application of high-pressure gas to

ensure complete pore filling.

Template-based synthesis of metal-based nanowires,

while offering precise control over size and shape, comes

with several limitations and difficulties [78]. The use of
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templates, whether hard or soft, introduces complexities

and challenges in the preparation process. The fabrication

steps involving template preparation and subsequent

removal can be intricate and time-consuming, potentially

increasing the overall production time and cost [79].

Additionally, the templates themselves may have limita-

tions, such as the need for specialized equipment for their

creation. Achieving uniformity in the nanowire arrays can

be challenging, as variations in template properties and

template removal processes may lead to non-uniform

growth. The process may also be sensitive to environ-

mental factors, affecting the reproducibility of the synthe-

sis. Furthermore, in template-based methods, the selection

of appropriate templates for specific applications is crucial,

and finding templates that are both suitable and easily

manipulated can be a challenge [80]. Overall, the limita-

tions in terms of complexity, cost and potential difficulties

in achieving uniformity make template-based synthesis of

metal-based nanowires a technically demanding process.

Researchers continue to address these challenges to

enhance the efficiency and scalability of template-based

methods for nanowire synthesis.

2.2 Electrodeposition via template assistance

Sometimes, template-based methods for preparing MNWs

could be complex and involve intricate fabrication pro-

cesses, adding to production time and cost. In contrast,

template-free synthesis relies on spontaneous nucleation

and growth without physical templates, offering simplic-

ity, cost-effectiveness and greater flexibility in materials

and reaction conditions [81]. While template-free meth-

ods may lack the precise control over size and shape seen

in template-based approaches, they can yield high-density

production and are less constrained by the need for

specific templates. The choice between these methods

depends on the desired properties for the intended appli-

cations, with template-based methods providing precision,

and template-free methods offering simplicity and

flexibility.

Shifting focus to more streamlined methodologies,

researchers have explored simpler alternatives that bypass

the complexities associated with template removal

(Fig. 2a) [82, 83]. A notable technique employs a metallic

wire or electrode as the foundational substrate. By

immersing this substrate in a solution containing the nec-

essary reagents and then air-drying, structural quality can

be optimized through repeated cycles. Similarly, poly-

merization of monomers on these electrodes creates sur-

faces conducive to biomaterial adhesion, such as enzymes,

enhancing the electrochemical properties of the resulting

electrode.

In template-independent methods, MNWs are fabricated

by using nanoparticles (NPs) as the primary building

blocks in the steps of Fig. 2b [82, 84]. In a biphasic system

containing an aqueous colloidal dispersion of metal-NPs

and an organic solvent, such as toluene, intense agitation

promotes the transfer of NPs into the organic phase. There,

the reduced electrostatic repulsion among NPs encourages

aggregation, leading to MNWs formation. The MNWs can

be seen as chains of NPs acting as interlinking nodes. This

approach eliminates the complex and potentially harmful

template extraction step, preserving the integrity of

nanostructure.

Chemical vapor deposition (CVD) stands out as a critical

technique for the synthesis of carbon nanotubes (CNTs) and

is currently under investigation for nanowire manufacturing

(Fig. 2c) [85–87]. It involves transforming a vaporized

precursor into a solid material on a substrate, such as silicon

wafers and metal plates. In the CVD process, the precursor

interacts with a heated substrate in a reaction chamber,

resulting in solid deposition. While CVD is scalable and has

potential for large-scale nanomaterial production, it requires

complex equipment, high temperatures and long durations.

The method amalgamates a precursor material with a car-

bon-based reductant, such as graphite powder, within a high-

temperature furnace setting. This approach is efficacious for

a range of metals, though its efficiency for metal oxides is

comparatively diminished due to the stringent conditions

required. Compared with gas precursors, which is versatile,

CVD for MNWs synthesis has cost advantages. CVD may

be more cost-effective and scalable, especially in continuous

processes than solvothermal and hydrothermal methods

[88]. Polyol synthesis can incur higher costs due to organic

solvents, and physical vapor deposition (PVD) may be

costlier with vacuum systems [89]. CVD’s scalability is

often superior to PVD but comparable to other wet-chemical

methods. The selection among these template-free methods

hinges on factors such as cost, scalability and the specific

requirements of nanowire properties for diverse applications.

Adhering to the LaMer paradigm [90], which suggests

that nucleation occurs in monodispersed homogenous

solutions, the onset of nucleation is triggered at the junc-

ture where the concentration of silver in zero valence state

attains a level of supersaturation, as depicted in the second

and third steps of Fig. 3a [91]. Subsequent to this phase,

commencing at the 120-min mark and persisting until the

completion of the synthesis, Ag atoms, which originate

from the reduced Ag nitrate, migrate and adhere to the

preformed nucleation sites. This migration facilitates the

formation of stable metallic linkages amongst the Ag

atoms, thereby accelerating the formation of one-dimen-

sional Ag nanostructures. This trajectory is in harmony

with foundational concepts in materials science and
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chemistry, yielding insights into the formation of these

nanostructures. As conveyed in Fig. 3b, the reduction of

the Ag source culminated in the creation of thinner and

shorter MNWs [92]. By reducing the concentration of

AgNO3 by 40%, the length of the Ag NWs was markedly

reduced, resulting in a broadened length distribution due to

the decreased availability of free Ag? during the initial

stages of MNWs formation. This phenomenon accentuates

the profound impact of Ag concentration on the shape of

MNWs and dimensions, as portrayed in our empirical data.

Sim et al. [93] manufactured a large-area flexible

Organic light-emitting diode (OLED) using a roll-to-roll

processing technique (Fig. 3c). Initially, a broad planarized

Ag MNWs electrode was constructed on a polyethylene

terephthalate (PET) substrate, utilizing a polyimide (PI)

film as the substrate to anchor the Ag MNWs. Ag MNWs

stabilized using a dispersing agent were deposited onto the

PI film via a Meyer rod technique. Following this, a layer

of ultraviolet (UV)-reactive prepolymer resin was admin-

istered to the surface of the Ag MNWs-coated PI film. This

assembly was subsequently laminated with a PET film and

subjected to ultraviolet radiation, catalyzing the polymer-

ization of the resin. After curing, the Ag MNWs film

encased within the PET film was separated from the PI

layer, yielding a transparent electrode [12, 94–97]. This

embedded Ag MNWs electrode offers a planar and smooth

surface, obviating the need for an additional planarization

stage during OLED construction. These findings substan-

tiate that Ag MNWs, synthesized via the rapid polyol

method, emerge as a formidable contender against the

brittle indium tin oxide (ITO) in fabricating large-area

flexible displays and illumination apparatuses. This

pioneering approach showcases potential avenues for

scalable and economical manufacturing of next-generation

flexible electronics and holds paramount importance in the

sphere of progressive materials and device engineering.

The synthesis of bimetallic Cu-Ag nanowires (Cu/Ag

MNWs) was achieved via a biphasic approach, initially

involving the generation of Cu MNWs, which then

underwent a galvanic replacement reaction with Ag, capi-

talizing on the higher standard reduction potential of Ag

(Ag? ? e- ? Ag(s), E = 0.80 V) relative to Cu

(Cu2? ? 2e- ? Cu(s), E = 0.34 V) (Fig. 3d) [98]. Con-

currently, expansive macroscopic two-dimensional (2D)

networks of Pt nanowires (Pt MNWs) were intricately

crafted through a hierarchical self-assembly process, gui-

ded by biomolecular ligands [99–103]. This process initi-

ated with the formation of 1.9 nm-sized nanocrystals,

which further assembled into 1D nanowires characterized

by a high frequency of grain boundaries (Fig. 3e) [99].

Fig. 2 Template-free synthesis of MNWs. a Schematic illustration of template-free synthesis method. Reproduced with permission
from Ref. [82]. Copyright 2016, Royal Society of Chemistry. b Schematic illustration of synthesis of glutathione-coated Au/Ag/Pt Alloy
NPs via stepwise galvanic replacement reaction of Ag NPs, followed by oxidative self-assembly into monolithic alloy aerogels via
removal of surfactant ligands. Reproduced with permission from Ref. [84]. Copyright 2022, American Chemical Society. c Schematic
diagram of precursors, annealed Al2O3-film/Si and LPCVD system, and growth process of Ga2O3 NWs. Reproduced with permission
from Ref. [87]. Copyright 2023, Multidisciplinary Digital Publishing Institute. d SEM image and XRD patten of Ga2O3 NWs. Reproduced
with permission from Ref. [87]. Copyright 2023, Multidisciplinary Digital Publishing Institute
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These nanowires then interconnected to fabricate extensive

monolayer networks extending over centimeter-scale areas.

Further investigation into the mechanism revealed that the

genesis of these MNWs sheets begins at the gas/liquid

interface within synthesis-induced bubbles, with sodium

borohydride (NaBH4) serving as a crucial agent. Upon the

disintegration of these bubbles, the Pt MNW sheets are

expelled in a manner akin to exocytosis at the gas/liquid

boundary, merging to form a contiguous monolayer Pt

MNW sheet. The innovative synthesis and the enhanced

electrocatalytic attributes of these Pt NWN sheets present

substantial potential for various applications, especially

within the realm of electrochemical technologies.

3 Biosensors fabrications

With miniaturization, fraction of free surfaces increases,

which has dominated influence on the total mechanical

properties of material.

In developing essential components, researchers employ

two predominant strategies, top-down and bottom-up

[40, 41, 104, 105]. The top-down approach begins with

bulk material and progressively refines it by removing

excess portions to achieve the desired configuration, akin to

subtractive manufacturing. This technique is widely used in

the electronics industry, especially in semiconductor chip

manufacturing, which typically requires photomasks for

lithography and chemical or physical etching to realize the

intended design [106–108]. Conversely, the bottom-up

strategy constructs nano or microarchitectures by sequen-

tially assembling smaller units, similar to building with

bricks, where individual atomic or molecular entities

interconnect to form the targeted structure. Classic illus-

trations of bottom-up methodologies encompass chemical

synthesis and electrochemical processes, which facilitate

the engineering of specific morphological structures.

Inspired by natural architectures, novel procedures have

been devised for fabricating micro and nanodevices. For

example, natural wooden structures, mussel structures and

leaf vein structures. Biological entities such as viruses or

proteins serve as templates for nanowire growth, and this

bio-template approach utilizes the natural ability of these

biomolecules to guide the formation of nanowires with

customized structures [109]. Also drawing inspiration from

the waterproof properties of lotus leaves, researchers are

exploring ways to endow nanowires with hydrophobic

properties, which could be valuable in applications such as

waterproof coatings and microfluidic devices. Bottom-up

strategies provide alternatives to navigate the intrinsic

Fig. 3 Synthesis and assembly processes of MNWs. a Schematic diagram of growth mechanism of Ag MNWs. Reproduced with
permission from Ref. [95]. Copyright 2015, Elsevier. b Electron microscopy snapshots of morphological characteristics of synthesized
Ag MNWs. Reproduced with permission from Ref. [96]. Copyright 2016, IOP. c Schematic of integration of a Roll-to-Roll system
coupled with Meyer rod coating process for efficient material fabrication. Reproduced with permission from Ref. [97]. Copyright 2018,
Royal Society of Chemistry. d Phases of evolution of Cu MNWs. Reproduced with permission from Ref. [98]. Copyright 2021, Springer.
e Large-scale hierarchical assembly of an ultrathin Pt MNWs network monolayer at gas/liquid interfaces, enabled by bubble facilitation.
Reproduced with permission from Ref. [99]. Copyright 2023, American Chemical Society
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obstacles presented by top-down approaches, which typi-

cally require intricate techniques and advanced instru-

mentation [105]. Although micro and nano systems have

historically relied on top-down fabrication, advancements

in small-scale device crafting have broadened the range of

techniques [28]. Emulating natural processes, the strategic

chemical arrangement of nanoscale materials sets the

foundation for the development of devices that exhibit

distinctive attributes, which stem from their nanoscopic

constituents [110–112]. The advent of novel materials,

coupled with the emergence of unanticipated nanoscale

phenomena, has been instrumental in forging new frontiers

in scientific research.

MNWs are crucial for a bottom-up fabrication approach,

enabling the creation of intricate nanostructures and their

subsequent assembly for nanotechnological applications

[113, 114]. A multitude of techniques such as template-

directed electrodeposition, assorted chemical methodolo-

gies, and CVD have been explored for the fabrication of

MNWs. Among these, template-assisted electrodeposition

is notable for its precision in fine-tuning the length,

diameter and density by careful adjustment of deposition

parameters or the template itself. The ensuing discussion

provides an analytical synopsis of these methodologies.

Figure 4a, b illustrates the conceptual differences

between bottom-up and top-down methodologies. The top-

down approach, while advantageous for achieving precise

alignment and directional control of MNWs, falls short in

terms of scalability compared to the bottom-up approach

[38]. The ice-templating process has undergone further

refinement for the 2D organization of MNWs, resulting in

structured and porous networks. Refining the ice-templat-

ing process for MNWs involves precise control over

freezing conditions, particle dispersion and post-processing

steps. Optimization includes temperature gradients, particle

size and concentration for uniform ice crystal growth,

yielding organized 2D networks [115]. Sequential tem-

plating and external fields enhance hierarchical structures

and alignment. Controlled sublimation and drying condi-

tions, coupled with densification and sintering, contribute

to the final network’s mechanical properties. The refined

process ensures tailored porosity and spatial arrangement,

crucial for applications such as sensors and electronics, in

which the specific organization of nanowires influences

material performance [116]. A prominent method encom-

passes the transformation of a three-dimensional (3D)

cellular framework into its 2D analog during thawing,

leveraging the exceptional malleability of ultra-thin MNWs

and the coalescence effects intrinsic to the MNWs. This

approach allows for precise control over the mesh dimen-

sions and bundle diameter of the emergent 2D Ag MNWs

mesh, optimizing both its photonic and electrical attributes.

Freezing from dual-directional sources leads to configura-

tions with perpendicular intersections (Fig. 4c) [117]. The

Fig. 4 Methods for integrating MNWs onto device substrates. a, b Depictions of incorporation of MNWs onto substrates utilizing both
bottom-up and top-down fabrication methods. Reproduced with permission from Ref. [38]. Copyright 2018, Elsevier. c Schematic
alongside a corresponding SEM image illustrating perpendicularly arranged Ag NWs designs, conceived through bidimensional ice-
guided technique. Reproduced with permission from Ref. [117]. Copyright 2021, WILEY–VCH. d Elaboration and underlying principle
of construction of Ag NWs microgrid. Reproduced with permission from Ref. [105]. Copyright 2018, WILEY–VCH
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deposition pattern of MNWs intricately corresponds to the

interplay between capillary and Marangoni flux, with their

quantified intensities showcased in Fig. 4d [105]. These

dual fluidic mechanisms can be adeptly modulated by

calibrating droplet dimensions to the physicochemical

characteristics of the ink and substrate. In ice-templating,

capillary and Marangoni flux play crucial roles in MNWs

deposition [118]. Capillary flux is driven by the pressure

difference across the liquid meniscus formed during

freezing. As ice grows, liquid is drawn into the solidifica-

tion front, guiding MNWs alignment. Marangoni flux is

influenced by surface tension gradients, causing fluid

motion during freezing. Temperature variations lead to

differing solute concentrations, inducing surface tension

gradients that transport MNWs. Together, these fluidic

mechanisms control MNWs positioning, alignment and

concentration within the ice template, impacting the final

two-dimensional arrangement [119]. Understanding capil-

lary and Marangoni flux is essential for optimizing ice-

templating processes and tailoring MNW networks for

various applications.

In template-assisted electrodeposition for nanowire

synthesis, precision in fine-tuning the length, diameter and

density is crucial for tailoring the nanowires to specific

applications. Precise control over the applied voltage and

deposition time allows researchers to regulate the length of

nanowires [120]. Longer deposition time or higher voltages

typically result in longer nanowires. The concentration of

metal ions in the electrolyte solution and the rate of elec-

trodeposition influence nanowire diameter. Higher ion

concentrations and slower deposition rates tend to produce

thicker nanowires. The density of nanowires can be tuned

by adjusting the template pore size and electrodeposition

parameters. Smaller template pores or optimized deposition

conditions can lead to higher nanowire densities [121].

4 Electrical biosensing

4.1 Electrochemical biosensing

The advent of scalable, solution-oriented synthesis

methodologies for MNWs has augmented their significance

in electrochemical domains [11, 122, 123]. MNWs possess

the potential to form cohesive 2D and 3D networks,

effectively eliminating the requirement for traditional car-

bon supports and mitigating the detrimental effects of

carbon corrosion. Notably, porous 3D NWs configurations

show promise as flow-through electrodes, offering

remarkable specific surface areas and superior mass

transfer coefficients, which consequently enhance the

efficiency of electrochemical sensing (Fig. 5a) [124, 125].

The modifiable surface architecture and dimensions of

MNWs provide researchers with a novel platform to design

electrodes ranging from atomic to microscale dimensions,

with the primary objective of optimizing electrochemical

performance. Currently, MNWs can be synthesized from a

diverse spectrum of 23 metals including but not limited to,

Ag, Au, Cu, Pd, Pt, Ni and Pb (Fig. 5b) [126, 127]. Among

them, Ag excels in high electrical conductivity, cost-ef-

fectiveness, and broad applications in electronics [128]. Au

offers stability and unique optical properties, advantageous

in biomedical sensing and catalysis. The decision balances

factors such as cost, electrical performance and specific

application needs. For instance, Ag is cost-effective and

electrically efficient, while the stability and optical char-

acteristics of Au make it suitable for biomedical and

optical applications. The selection hinges on optimizing

material properties for targeted functionalities in diverse

MNW applications. Recent research trends emphasize Cu-

based electrodes due to their advantages in electrochemical

reduction processes [129]. Affordability, abundance and

excellent conductivity makes Cu an attractive alternative to

noble metals [130]. In electrocatalysis, Cu exhibits unique

surface reactivity and catalytic activity, particularly in CO2

reduction reactions. It facilitates selective product forma-

tion such as ethylene, thus promoting sustainable energy

conversion. Moreover, Cu-based electrodes play a crucial

role in advancing green technologies, contributing to the

growing interest in renewable energy research and sus-

tainable electrochemical processes, in which properties of

Cu offer a balance between cost-effectiveness and perfor-

mance [131].

Figure 5c shows contrary to the common assumption

that surface-to-volume ratio of MNWs is smaller than NPs

with analogous diameters, it is essential to highlight that

MNWs may exhibit increased specific activity due to their

distinct surface morphology [132]. Moreover, the durabil-

ity of MNWs markedly surpasses that of NPs, an attribute

stemming from their resistance to phenomena such as

Ostwald ripening, dissolution and detachment from stan-

dard carbon backbones [133]. Importantly, MNW arrays

can establish highly conductive, standalone frameworks,

bypassing reliance on additional carbon supports [134].

These attributes underscore the potential of MNWs to drive

innovations in the broader electrochemical sector.

Electrochemical sensors have emerged as a promising

avenue to address specific analytical requisites, distin-

guished by their rapid response, cost-efficiency, operational

simplicity and compatibility with miniaturized devices

[135–139]. The landscape of electrochemical sensors

explored for the quantification of biomarkers is diverse,

including impedimetric, chronoamperometric, voltammet-

ric and biosensor modalities [140–143]. Scholars have

rigorously assessed an assortment of electrode materials for

the detection of biomarkers. Recent research trends have
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emphasized Cu-based electrodes, attributable to their

inherent electrocatalytic advantages during electrochemical

reduction processes. An innovative approach was intro-

duced by Wu et al. [144], wherein a Cu MNWs array was

fabricated via the electrochemical reduction of Cu oxide

NWs initially generated through thermal oxidation

(Fig. 5d). By integrating this electrode with amperometric

detection, they adeptly quantified nitrate ions over a linear

range of 50 to 600 lmol�L-1, achieving a detection limit of

12.2 lmol�L-1. These innovative approaches underscore

the progressive strides in the domain of electrochemical

sensors enhanced with MNWs.

Patella et al. [145] introduced a nanostructured sensor

constituted of an array of Cu MNWs, devised through the

galvanic deposition technique (Fig. 6a). These sensors

offer an expeditious response time and a remarkable

detection limit of less than 10 lmol�L-1 due to their

nanoarchitecture. Analytical evaluations under the influ-

ence of potential interferents confirmed their negligible

impact. Such findings are indicative of groundbreaking

strides in devising methods for nitrate ion surveillance. In

the synthesis of Cu NWs and Cu MNWs/rGO (reduced

graphene oxide) hybrids, ethylenediamine (EDA) stands

out as an indispensable structure-directing agent. EDA

governs the anisotropic growth of Cu MNWs, stemming

from spherical Cu seeds, originating from the reduction of

specific Cu complexes, chiefly Cu(OH)4
2-, by hydrazine

(N2H4) in a highly concentrated alkaline solution. As

showcased in Fig. 6b(i), Ju et al. [146] offer SEM images

that delineate the morphology of Cu MNWs. These struc-

tures, consistent in their morphology, have an diameter

of * 100 nm, and their lengths vary from tens to

micrometers. High resolution SEM image, highlighted in

Fig. 6b(i), presents the pristine surface of the NWs. X-ray

diffraction (XRD) pattern of the Cu MNWs/rGO compos-

ites is shown in Fig. 6b(ii). A dominant peak at 23.1�
corroborates the effective reduction of graphene oxide

(GO) to rGO, albeit with some structural disarray. Peaks

evident at 43.3�, 50.4� and 74.1� resonate with the (111),

(200) and (311) crystalline planes of Cu, suggesting its

face-centered cubic crystal framework (JCPDS No.

04-0836). It is imperative to address the existence of

potential interferents, including molecules such as ascorbic

acid (AA), dopamine (DA), uric acid (UA) and saccharides

such as fructose and sucrose. Thus, the resilience of

biosensors against these interferents becomes imperative.

This resilience was tested by immersing the sensor in a

0.5 mmol�L-1 glucose solution, complemented with equal

concentrations of potential interferents, as highlighted in

Fig. 6b(iii). The resultant electrochemical readings,

derived from the oxidation of these compounds, demon-

strated minimal interference with glucose oxidation,

accentuating the specificity of Cu MNWs/rGO for glucose

recognition.

MNWs have carved a niche within the realm of nano-

materials, showcasing significant potential. Their appeal

lies in their intrinsic properties: uni-axial conduction

pathways, dimensions tailored to the target molecules and

Fig. 5 MNWs for electrochemical biosensing. a Inside diagram and coagulation interface of wet-spinning process for constructing a
porous MP hybrid fiber. Reproduced with permission from Ref. [124]. Copyright 2023, American Chemical Society. b Crystal phase
regulation in noble metal nanocrystals. Reproduced with permission from Ref. [126]. Copyright 2016, American Chemical Society.
c Electrocatalytic performance of Pt 3D-MNWs tested by methanol oxidation reaction (MOR). Reproduced with permission from Ref.
[132]. Copyright 2021, American Chemical Society. d Morphology images and structures of Cu wires after electrochemical reduction
and amperometric response of Cu MNWs electrode with successive addition of NaNO3 at - 0.46 V. Reproduced with permission from
Ref. [144]. Copyright 2018, Elsevier
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exemplary electrical transport capability. Illustratively, Au

NWs have been employed for detecting Alzheimer’s dis-

ease detection, GaN NWs in nucleic acid detection

(Fig. 6c) [147, 148], TiO2 MNWs for bacterial monitoring,

and Si MNWs for detecting hepatitis B and hepatocellular

carcinoma markers, specifically a-fetoprotein (AFP).

In the domain of EIS, MNWs offer a plethora of designs

and orientations, each imparting its unique functional

imprint. Although 1D MNWs are integral to semicon-

ducting devices, 3D structures, termed as MNW arrays, are

more suitable for multi-component detection systems. The

performance efficiency of an MNW array hinges on its

fabrication precision, influencing key parameters such as

diameter, length, orientation and crystallinity.

Building on this, another exploration detailed the cre-

ation of a variety of MNWs of different lengths, anchored

on paper matrices. This was achieved using electrodepo-

sition templates, supplemented by efficient adhesive tape-

guided patterning conducted at room temperature.

Remarkably, this avant-garde strategy revealed an

impressive electrode-tissue impedance chart, positioning it

as a potential tool for capturing electrocardiographic pat-

terns without the need for conductive gels [149].

To effectively combat infectious disease outbreaks,

especially the COVID-19 pandemic, molecular diagnostics

that are precise, quick and cost-effective, are indispensable.

Microfluidic paper-based analytical devices (lPADs) have
risen to prominence as diagnostic instruments

[123, 150–152]. lPADs with EIS biosensors offer unique

advantages in combating infectious diseases. MNWs

enhance EIS biosensor effectiveness by improving elec-

trical conductivity and surface area, enhancing sensitivity

for rapid and accurate detection of biomarkers. The inte-

gration of MNWs into lPADs facilitates portable, low-cost
and point-of-care diagnostics. This amalgamation enables

early disease detection, vital for infectious diseases, with

the potential for widespread, affordable deployment in

resource-limited settings. The synergistic combination of

lPADs, EIS biosensors and MNWs underscores a

promising approach for accessible and efficient disease

diagnostics, supporting global health initiatives. Among

diagnostic modalities, EIS biosensors, marked by their

label-free approach and increased sensitivity, emerge as

vital tools in enhancing diagnostic accuracy. Yet, a

notable gap exists in refining EIS biosensing within

lPADs. In this context, Li et al. [148] devised an innova-

tive strategy aimed at amplifying the efficacy of EIS

biosensors embedded within paper substrates, utilizing

ZnO MNWs in-situ grown on working electrodes (WEs) as

illustrated in Fig. 6d. By diligently comparing diverse EIS

configurations and evaluating the role of ZnO-MNWs in

EIS measurements, the team emphasized the efficacy of

ZnO-MNW-augmented WEs in supporting Faradaic reac-

tions with iron-based electron mediators. The meticulous

calibration of these paper-based EIS biosensors, equipped

with various ZnO MNW configurations, resulted in an

Fig. 6 Illustrations of various nanowire-based applications. a Electrochemical sensor showcasing a Cu MNW array meticulously
engineered for selective detection of nitrate ions. Reproduced with permission from Ref. [145]. Copyright 2021, Elsevier.
b Development of a non-enzymatic amperometric glucose sensor integrating Cu MNWs and rGO layers. Reproduced with permission
from Ref. [146]. Copyright 2016, WILEY–VCH. c Electrode adaptation employing nanowire complications, bolstering electrochemical
discernment capabilities pertinent to nucleic acids. Reproduced with permission from Ref. [147]. Copyright 2013, Elsevier.
d Amplification of efficacy inherent to paper-based EIS efficacy via ZnO MNWs biosensors. Reproduced with permission from Ref.
[148]. Copyright 2021, Elsevier
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impressively low detection limit (0.4 pg�ml-1) for identi-

fying a specific antigen, recognized as a biomarker for the

human immunodeficiency virus (HIV). Detailed micro-

scopic examination in tandem with electrochemical anal-

ysis provided a deeper understanding of the interplay

between the structural characteristics of ZnO-MNW-en-

hanced working electrodes (WEs) and their electrochemi-

cal properties, which in turn affect the performances of EIS

nanobiosensors and detection capabilities. The investiga-

tion further demonstrated the proficiency of these

nanobiosensors in detecting assorted concentrations of the

IgG antibody (CR3022) against SARS-CoV-2 in human

serum samples, with a range extending from nil to

1 lg�ml-1. This study not only reveals a viable approach

for crafting superior EIS lPADs but also underscores their

potential as rapid diagnostic tools in global health crises.

4.2 FET biosensing

FET biosensors have risen to prominence in the sphere of

early biomarker identification and pharmaceutical assess-

ment [39, 153–156]. A vast body of research attests to the

capability of these state-of-the-art sensors in identifying a

multitude of biomolecular targets with precision, speci-

ficity, and in a label-free manner [157–161]. Over recent

decades, innovations in FET biosensor design, especially

for clinical diagnostics, have been monumental. Their

remarkable electronic characteristics, combined with their

compact nature and adaptability, make them ideal candi-

dates for expedited label-free molecular detection. Fur-

thermore, when infused with nanotechnologies, specifically

nanoscale materials such as MNWs, their detection

potential is notably augmented. Their scalable, top-tier

production also establishes them as a primary option for

sensing and evaluation platforms. Moreover, MNWs pos-

sess the capability to amplify the detection sensitivity and

specificity of FET sensors substantially. Notwithstanding

these advancements, there remain lingering challenges

regarding the effectiveness and clinical implementation of

transistor-based point-of-care (POC) devices.

Central to the operation of these biosensors is the semi-

conductive route, designated as the ‘‘channel’’, flanked by

source–drain (S–D) electrodes. The presence of charged

molecules atop the FET biosensors can influence the con-

ductance in the S–D channel, which is subject to modulation

by an electrostatically-coupled third gate electrode, operating

through a slender dielectric partition [162–165]. Typically,

oxide, such as SiO2 (Fig. 7a), acts as the gate dielectric with

an underlying p-type silicon base [38]. Negative gate poten-

tial intensifies holes accumulation, increasing channel con-

ductance, while its positive counterpart depletes holes,

diminishing conductance. Molecular adsorption on the

semiconductor channel either adjusts the local potential or

directly shifts the properties of the channel, varying the

conductance of FET. This adaptability, enhanced sensitivity

and real-time functionality distinguish the FET as an exem-

plary sensing apparatus. In contrast, solution-gated FET

biosensors enable analyte identification in a liquid environ-

ment (Fig. 7a). Herein, semiconducting MNW pathways

reside within a designated flow or sensory chamber. To pre-

vent current leakage caused by ionic motions, insulating

materials are employed on the source and electrodes. The

submerged gate electrode, commonly composed of Ag/AgCl

or Pt, is constrained by dimensional limitations, necessitating

the utilization of miniaturized reference electrodes. At the

channel-to-solution juncture, the gate potential is experienced

across the confined breadth of the electric double-layer

capacitance. It is the ionicmakeup of the solution that dictates

the thickness of this double layer, also known as the Debye

length, which is generally in the vicinity of 1 nm.

MNW biosensors have gained significant traction for bio-

marker detection recently. However, direct detection from

bodily fluids remains largely underexamined due to the intri-

cacies of suchmedia, signifying a diminishedpractical utility of

these advanced nanobiosensors. Chang et al. [166] have

developed a nanowire-based biosensing system designed for

the rapid, label-free and electrical identification of cancer

biomarkers, utilizing blood samples collected directly from

capillaries (Fig. 7b). By passivating the MNW surface, they

effectively negated the interference from non-specific binding

during real-time evaluations in whole blood. Such passivated

devices showcased notably reduced noise from unintended

protein and biomaterial attachment in serum and exhibited

heightened sensitivity toward designated biomarkers compared

to their non-coated counterparts. The analytical sensitivity of

these coated sensors in blood mirrored their performance in

equivalent ionic-strength buffer solutions, indicating a negli-

gible degradation in capability amidst the multifaceted med-

ium. They then reliably detected a spectrum of cancer-linked

markers at clinically relevant levels straight from capillary-

sourced blood samples using their optimized system.

When looking into the design parameters, it becomes

apparent that the necessity for nanostructured and low-

roughness transparent electrodes is paramount. In their

exploration, Ben-Sasson et al. succinctly outline the verti-

cal field-effect transistor (VFET) structure, further eluci-

dating the primary physics governing its operation [159].

Figure 7c offers a visual representation of the vertical FET

design [161]. The VFET is constructed in a layered format,

consisting of several key components: a gate (G), a gate

dielectric layer, a source electrode (S), a semiconductor

layer and a final drain contact (D). This design advanta-

geously allows for the straightforward fabrication of

devices with ultra-short channel lengths. For effective

interaction among these components, the source electrode

is required to be permeable to the vertical gate’s low-
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frequency or direct current (DC) electric fields. Further

examination of the resultant film was conducted using

atomic force microscopy (AFM), as explicated in Fig. 7c.

It is notable that the maximum film thickness of the

nanowires is below 30 nm, with a typical nanowire bundle

measuring around 100 nm in width. The gaps between

these bundles span several hundred nanometers. The

obtained height-to-diameter (h/D) ratio is kept sufficiently

low to ensure an impressive on/off current ratio.

While transistor-based point-of-care devices, FET

biosensors show promise, challenges persist in their effec-

tiveness and clinical implementation. Achieving consistent

reproducibility in device fabrication, minimizing variations

and ensuring stability over time remain key challenges.

Real-world applications require addressing environmental

factors that can impact device performance. Standardization,

affordability and user-friendliness are crucial for widespread

clinical adoption. Moreover, issues related to sensitivity,

specificity, and the validation of results in diverse clinical

settings need careful consideration. A balanced perspective

acknowledges these challenges and highlights the ongoing

efforts to optimize transistor-based devices for reliable and

accessible point-of-care diagnostics.

5 Outlooks

5.1 Machine learning

Machine learning possesses exceptional capacity for

managing colossal datasets extracted from intricate

matrices in biosensing [167–171]. One prominent advan-

tage is machine learning’s ability to distill pertinent ana-

lytical conclusions from cluttered and low-resolution data,

which might otherwise be obscured. Moreover, proficient

execution of machine learning techniques elucidates

intrinsic correlations between sample parameters and

sensing signals and illuminates links between signals and

biological events.

Specifically, machine learning can augment biosensor

data analysis through several means. Figure 8a delineates

machine learning’s advantages [167, 172–174]. Algorithms

may categorize sensing signals based on the target sub-

stance. On-field biosensor applications can introduce

challenges due to matrix complexities and shifting opera-

tional conditions. External interferences, such as contami-

nation, can significantly impact results. Machine learning

can meticulously inspect the signal, affirm its veracity, and

even compensate for deviations due to biofouling or other

real-sample interferences. Since biosensor signals vary

over seconds to minutes and electrical noise arises within

seconds, machine learning models can distinguish genuine

signals from this noise. These algorithms can reveal latent

patterns, facilitating a more insightful comprehension of

sensing data. Machine learning acts as a formidable

instrument that boosts the swift, accurate and direct inter-

pretation of biosensor data, crucial for on-site detection or

diagnostic tasks. Figure 8b demonstrates machine learn-

ing’s taxonomy [167].

Yu et al. [175] have suggested a methodology that

integrates a sensor array with plasmonic nano sensors and

employs machine learning algorithms to differentiate

Fig. 7 FET biosensors. a Conceptual diagram of FET biosensors (left: back-gated configuration, right: solution-gated configuration)
employed for chemical-biological detection purposes. Reproduced with permission from Ref. [38]. Copyright 2018, Elsevier. b Different
device architectures and corresponding real-time detection outcomes. Reproduced with permission from Ref. [162]. Copyright 2011,
American Chemical Society. c (i) Illustration of Au/Ag metallic nanowire vertical organic field-effect transistor (MN-VOFET)
configuration; (ii) detailed high-definition scanning electron microscopy (HDSEM) representation of intricate network of metallic
nanowires; (iii) topography of nanowire film examined post a secondary stabilization submersion treatment through atomic force
microscopy (AFM) imaging. Reproduced with permission from Ref. [161]. Copyright 2015, American Chemical Society

1Rare Met. (2024) 43(12):6233–6254

Metal-based nanowires in electrical biosensing 6245



between b-lactam antibiotic resistance among ESKAPE

pathogens (Fig. 8c). The phenotypic differences between

antibiotic-resistant and antibiotic-susceptible pathogens

emanate from antibiotic hydrolases on their cell mem-

branes/walls. To differentiate between these phenotypes,

peptide-modified gold nanomaterials with varied surface

charges and hydrophobic/hydrophilic characteristics are

utilized. Bacterial binding affinities with peptides, contin-

gent on their charge and hydrophilic/hydrophobic traits,

dictate the surface plasmon resonance (SPR) spectrum,

which serves as our signal metric. Employing machine

learning facilitates the analysis of bacterial signatures from

the plasmonic sensor array, distinguishing between

antibiotic-resistant and susceptible strains in the ESKAPE

pathogen. Both unsupervised and supervised machine

learning methods identified antibiotic resistance in 12

ESKAPE pathogens with a remarkable accuracy rate of

89.74%. This research posits that gold MNWs might con-

siderably amplify the sensitivity of plasmonic nano sen-

sors, an aspect not extensively probed in current literature.

Figure 8d outlines and discusses the four fundamental

components of machine learning-enhanced biosensors

[176]. It underscores noninvasive biosensors’ principles

and dominant types, both portable and wearable, and

delves into physiological signals from these biosensors,

particularly focusing on electrical and optical signals. This

discussion then shifts to breakthroughs in machine learn-

ing-enhanced biosensors, spotlighting data handling

methodologies. These techniques are examined across

three tiers: preliminary data handling processing, tradi-

tional algorithms and state-of-the-art neural network-based

algorithms.

The transformative potential of machine learning in

nano sensor applications sets the stage for a profound shift

toward the era of digital health. As machine learning

algorithms enhance the capabilities of nano sensors, the

synergy between data analytics and advanced sensing

technologies propels us into a new frontier of healthcare

innovation. This transition is not merely confined to the

realm of diagnostics; rather, it marks the inception of a

comprehensive digital health paradigm.

5.2 Era of digital health

The integration of nano sensors and machine learning not

only refines our understanding of diseases at the molecular

level but also lays the foundation for personalized health-

care strategies. In this era, the convergence of precise data

analytics, real-time monitoring and predictive modeling

promises a healthcare landscape characterized by proactive

interventions, improved patient outcomes and a more

interconnected and data-driven approach to well-being.

Fig. 8 Applications and mechanisms of machine learning in enhancing biosensor functionality. a Benefits of biosensors amplified
through machine learning; b decoding machine learning algorithms. Reproduced with permission from Ref. [167]. Copyright 2020,
American Chemical Society. c Representation of ESKAPE pathogens resistance detection using plasmonic sensors integrated with
machine learning. Reproduced with permission from Ref. [168]. Copyright 2023, American Chemical Society. d Overview of machine
learning-enhanced biosensor operations. Reproduced with permission from Ref. [169]. Copyright 2021, John Wiley and Sons
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The advent of digital health, propelled by wearable

technology and comprehensive data analytics, presents a

novel opportunity to provide patients with instantaneous

diagnostic capabilities and insights [177]. Mobile health

(mHealth) devices that can detect a wide spectrum of

biomarkers at minute concentrations in body fluids require

the use of bio-affinity sensors. Such sensors predominantly

employ ‘‘bioreceptors’’ for accurate target identification.

The versatility of portable point-of-care testing (POCT)

devices with affinity-based detection is evidenced in their

wide range of applications, from continuous health tracking

to precise disease diagnosis and management [174, 178].

Simultaneously, the rise of pliable and adaptable electron-

ics in wearable systems over the recent decade heralds an

innovative pathway for uninterrupted ambulatory data

retrieval. This section charts the progressive trajectory of

mHealth bio-affinity sensor technologies, tracing their

evolution from preliminary laboratory assessments, tran-

sitioning to portable POCT tools and culminating in avant-

garde wearable devices. Focus is directed toward the

intricate detection mechanisms of mHealth affinity sensors,

aided by bioreceptors such as antibodies, DNAs, aptamers

and molecularly imprinted structures. Their associated

signal transduction techniques, both electrochemical and

optical, are also covered. This review concludes with a

forward-looking perspective on the domain, pinpointing

essential technological hurdles that must be navigated to

spearhead a groundbreaking era in body-adherent affinity

sensing platforms.

Historically, continuous sensing platforms utilizing tear

fluids predominantly concentrated on glucose detection

[176, 179]. Advancements in sensor technology have

evolved from the early stages of flexible enzymatic sensing

strips to the current integration of sensors within polymer-

based contact lenses. Yao et al. [180] have been at the

forefront, developing a contact lens sensor framework

employing a Ti sol–gel process for enzyme immobilization,

which resulted in heightened sensitivity. Further refinements

led to the enhancement of these glucose-sensitive contact

lenses, which now permit continuous monitoring of tear

fluid through an embedded loop antenna and a wireless

communication chipset embedded in the polymer matrix.

Kim et al. [181, 182] have innovatively incorporated gra-

phene with Ag MNWs to enhance the conductivity, optical

transparency and flexibility of the contact lens sensors. By

configuring graphene and nanowires as source-drain ele-

ments, along with a graphene channel FET on a biocom-

patible parylene substrate, they introduced a comprehensive

soft-lens sensor system. This breakthrough enables remote,

live glucose monitoring in rabbit eyes and in vitro intraoc-

ular pressure assessments using bovine eyes. However, the

potential for these sensors to concurrently detect both glu-

cose levels and pressure has yet to be investigated.

5.3 Flexible electronics

The emergence of wearable sensors marks a pivotal

advancement toward individualized healthcare, providing

the capability for uninterrupted physiological data acqui-

sition, which is essential for timely preventive healthcare

measures [183–187]. Nevertheless, the discrepancies in

flexibility between traditional rigid electronics and the soft

tissues in body frequently result in measurement inaccu-

racies during cutaneous monitoring. The advent of flexible

electronics, characterized by their pliability and skin-like

adaptability, facilitates seamless integration with human

physiology. Advancements in the material science of

MNWs are anticipated to propel research efforts within this

domain significantly.

A quintessential flexible electronic device comprises

several fundamental elements: the substrate, the active

stratum, and the interfacing layer [174, 188]. The active

layer, often derived from inorganic nanomaterials and

fashioned via physical transference or solution-based

methods, is acclaimed for its commendable physicochem-

ical traits, charge carrier mobility and structural robustness.

Flexible electronics, employing printed and transferred

active components, have demonstrated considerable

potential in physical detection tasks. For instance, a fusion

of a nanowire transistor matrix and conductive, pressure-

responsive rubber materializes into a system capable of

tactile profiling [189]. These innovative sensors have been

successfully attached as wearable patches for monitoring

cutaneous temperature, cardiac electrical activity and var-

ious human motions.

6 Conclusion

This review reveals a promising trajectory in MNWs

applications across diverse fields. As MNWs continue to

emerge as versatile building blocks, the synthesis methods

discussed, including template-based and template-free

approaches, offer pathways for tailoring their properties.

Ongoing advancements are expected to address challenges

in scalability, uniformity, and environmentally friendly

synthesis, fostering the integration of MNWs into various

technologies. In the realm of sensors, MNWs’ unique

characteristics, such as high aspect ratios and tunable

properties, contribute to enhanced sensing performance.

The exploration of novel procedures inspired by natural

architectures showcases the potential for MNWs to mimic

complex biological structures, opening avenues for inno-

vative applications in fields like electronics, photonics, and

catalysis.

As the field advances, ethical considerations, environ-

mental implications, and sustainable synthesis methods
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will be central to responsible MNW development. Col-

laboration across disciplines and transparent communica-

tion will be pivotal in navigating these challenges. Looking

forward, the outlook is optimistic, envisioning MNWs as

integral components in cutting-edge technologies, con-

tributing to advancements in healthcare, energy, and

beyond.
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